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ABSTRACT
Greater demand for social graph data among researchers and ana-
lysts has fueled an increase in such datasets being published. Con-
sequently, concerns about privacy breach have also risen steadily.
To mitigate privacy risks a myriad of social graph anonymization
schemes have been proposed. Anonymizing high dimensional data
is a very hard problem and conventionally it is considered unwise
to publish graph data even without identifiers. Often the schemes
proposed provide no proof of efficacy and are designed to defeat
only a narrow set of attacks.

To facilitate benchmarking of perturbation-based social graph
anonymization schemes we propose a machine learning framework
which provides a quick and automated platform to evaluate and com-
pare the schemes. We present a mechanism to train the framework
without ground truth. We present graph structure based node fea-
tures that can be easily tuned to accommodate weak or strong adver-
saries as well as node and edge attributes. The framework provides
a granular graph structure-based metric to capture the likelihood of
a node being re-identified. We conduct a thorough analysis of the
effect of graph perturbation on anonymity achieved and utility pre-
served using publicly available real world social graphs. To this end
we analyze six popular graph perturbation schemes including those
promising k-anonymity. Our techniques automate weeding out poor
anonymization schemes. Experiments show that it is hard to provide
anonymity while preserving utility whereas some schemes destroy
utility without providing much anonymity. All useful anonymiza-
tion schemes leave a fraction a true edges intact and these true
friends lead to the re-identification of nodes.

1. INTRODUCTION
Much of the data collected as a result of our digital activities is

high dimensional and a valuable resource to study human behavior.
As a result the demand for such data among researchers is very
high, to fill this gap data providers often release data for public good.
However, this poses serious threat to the privacy of individuals in the
dataset [1–3]. High dimensional data is notorious to anonymize [4],
even more so for social graphs due to entities being interlinked.

Social graphs provide a rich source of data for studying human
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behavior. However, such benefits come at a price; releasing fea-
ture rich private datasets have a massive potential to cause a privacy
catastrophe1. To alleviate these concerns data providers often scrub
off personal identifiers claiming it to be sufficient to preserve pri-
vacy. Such techniques are easily defeated [1–3]. Though it provides
the two fold advantage of simplicity and legal compliance by pro-
viding plausible deniability in case of a privacy breach.

Considerable effort has been spent in devising better social graph
anonymization schemes that preserve privacy without hindering
analysis [5–9], however without carrying the burden of proof. It
should be noted that some amount of information would inevitably
be destroyed to preserve privacy thus affecting analysis. There is an
inherent tension between preserving privacy vs preserving utility of
datasets and one cannot be achieved without adversely affecting the
other. Most schemes are proposed in an ad-hoc manner and show
no incremental evolution, thus confounding their comparison. This
has resulted in numerous anonymization schemes, but construct-
ing attacks even for simple ones requires careful study and manual
work. This has created a skewed ecosystem where anonymization
schemes are proposed without much effort and a considerable time
must be spent to evaluate them.

As a solution, we propose a machine learning framework to
benchmark perturbation-based social graph anonymization schemes.
To the best of our knowledge this is the first attempt to compare
anonymization schemes in a quick and automated manner. The
framework can efficiently handle any perturbation-based social
graph anonymization scheme and a wide variety of threat models.
Our contributions. Specifically, we: (i) Design and implement a
machine learning framework to benchmark perturbation-based so-
cial graph anonymization schemes. The framework provides a quick
and automated platform to evaluate and compare schemes efficiently
(Section 3.3). (ii) Present a mechanism to train the framework with-
out ground truth (Section 3.3.2). (iii) Conduct a thorough analysis of
the effect of graph perturbation on the anonymity achieved and util-
ity preserved using publicly available real world social graphs. To
this end we analyze six popular graph perturbation schemes includ-
ing those promising k-anonymity based on two real world social
networks for three perturbation levels each – a total of 36 configura-
tions (Section 4). (iv) Conduct a thorough analysis of the effect of
graph perturbation on utility by analyzing five fundamental graph
metrics for each of the 36 configurations (Section 4).

2. ANONYMIZING SOCIAL GRAPHS
Social graph anonymization schemes mainly fall under two cate-

gories [10–12] – clustering-based schemes and perturbation-based
schemes.

1www.nytimes.com/2006/08/09/technology/09aol.html
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2.1 Clustering-based Schemes
Clustering-based graph anonymization schemes release aggre-

gate graph information instead of the raw graph. Zheleva and
Getoor [13] propose preserving privacy in social graphs by remov-
ing sensitive edges and selectively deleting non-sensitive edges.
Cormode et al. [14] propose perturbing the mapping from entity
to nodes using safe groupings while keeping the structure of the
graph intact. Hay et al. [15] propose preserving privacy by group-
ing nodes into partitions and publishing the number of nodes in each
partition and density of edges that exist within and across partitions.
Campan and Truta [16] present a clustering mechanism similar to
Hay et al., the authors also consider preserving privacy when the
nodes have attributes. Bhagat et al. [17] propose using label lists
to protect the privacy of node attributes and partitioning nodes into
classes to protect against structural attacks. Clustering nodes and
edges provides some privacy with limited data utility. Summarizing
information prevents granular analysis and only provides an aggre-
gate view. Perturbation-based schemes fare better in terms of data
utility which we discuss next.

2.2 Perturbation-based Schemes
Perturbation-based schemes introduce imperfections in the so-

cial graph before publishing to deter graph-structure-based de-
anonymization attacks. Certain schemes appear frequently in lit-
erature, they all involve deleting/adding edges in various ways.
Some of them are: (i) Random Sparsification (RSP) [2, 5] – delete
a fraction of graph edges at random. (ii) Random Add/Delete
(RAD) [5, 18, 19] – delete a number of edges followed by introduc-
ing the same number of non-edges at random, this preserves the total
number of edges in the graph. (iii) Random Switch (RSW) [5, 19–
21] – randomly select two edges and switch them across their nodes
which are not already connected. This preserves the number of
edges and the individual node degrees.

Ying and Wu [19] modify RAD and RSW to preserve spectral
graph properties which are often damaged by random perturbation.
Liu et al. [22] propose preserving edge weight privacy of a released
graph. Xue et al.(Random Edge Perturbation – REP) [8] propose
perturbing the graph by removing a fraction of edges and adding the
same fraction of non-edges to defeat structure based attacks [23].
k-Anonymity Based Schemes. Latanya Sweeney [24] proposed k-
anonymity to anonymize relational databases. A released dataset is
k-anonymous if each individual is indistinguishable from at least
k − 1 others in the dataset. k-anonymity provides some desirable
properties; however, it is of little use in protecting high-dimensional
datasets [4]. Despite this a multitude of k-anonymity based graph
anonymization schemes have been proposed. Such schemes show
a gradual progression – starting with making the degrees of nodes
k-anonymous followed by 1-hop neighborhood to 2-hop neighbor-
hood (see, Appendix A). The schemes that target neighborhoods
aim to modify the sub-graph around each node in such a way that
it becomes indistinguishable from k − 1 others. Such schemes
are computationally very expensive and some are known to be NP-
hard [6, 9]. Also they are particularly damaging to the overall utility
of graph; the nature of anonymization strategy makes analysis of
community structure and related properties hard.

Liu and Terzi (k-Degree Anonymous – KDA) [7] propose ways
to make the graph k-degree anonymous. Zhou and Pei (1-hop k-
Anonymous – 1HKA) [25] present a scheme to make the nodes in
a social network k-anonymous with respect to it’s 1-hop neighbor-
hood. Thompson and Yao [26] propose schemes similar to KDA
and 1HKA to achieve k-degree anonymity and 1-hop k-anonymity
using node clustering. Zou et al. [9] propose an anonymization
scheme based on graph isomorphism. The original graph is modi-

fied by inserting nodes and edges such that each node has at least
k − 1 automorphisms. Cheng et al. [6] propose techniques to pre-
vent leakage of a node’s identifying information and its relationship
with other nodes in anonymized social networks. They propose a
solution using k-isomorphism by splitting the original graph into k
isomorphic disjoint sub-graphs such that they are pair-wise isomor-
phic. Wu et al. [27] propose k-symmetry to obscure node identities
by inserting new edges and vertices to perturb a graph. The graph is
anonymized by forcing each node to have at least k− 1 structurally
equivalent counterparts to prevent structural attacks.

As k-anonymization guarantees get stronger the complexity rises
exponentially and we run into NP-hard problems. Such schemes
also require suppressing huge amounts of information [4] thus ren-
dering the data useless. Remainder of the paper analyses a repre-
sentative sample of six anonymization schemes – RSP, RAD, RSW,
REP, KDA and 1HKA in detail and compares them with the base
case when graphs are not anonymized. The analysis studies the
true marginal anonymity achieved purely due to the anonymization
scheme employed and its effect on utility.

3. QUANTIFYING ANONYMITY
Quantifying anonymity in graphs is hard—even for a given

anonymization scheme it is challenging to quantify the relation
between anonymity and graph perturbation. It is much harder to
compare different schemes and the anonymity they provide. All
meaningful anonymization schemes are constrained by preserving
utility which makes them vulnerable to attacks. We exploit the util-
ity constraint to train a learning algorithm that learns features from
anonymized graphs to quantify de-anonymization success.

3.1 The Threat Model
Research indicates that anonymizing high-dimensional data to

preserve privacy does not work in practice [1–3]. Even when an
anonymized dataset alone does not pose any threat of privacy breach,
when combined with auxiliary data they could lead to discoveries
which were not possible in the absence of the anonymized data.

Releasing anonymized social graphs presents similar challenges.
Even after removing node identifiers the structure of the graph
can be used to splice it with overlapping social graphs thus re-
vealing scrubbed off identities and potentially private relations
among them. Ideally an anonymization scheme should render re-
linking attacks [2, 3] impractical while still retaining the utility of
datasets. Graph anonymization literature contains a wide variety
of schemes with varying aims (see, Section 2). Comparing these
schemes requires a common threat model. To measure the efficacy
of an anonymization scheme we quantify the success rate in re-
identifying common nodes in an overlapping pair of graphs, both
of which have been anonymized using the scheme being analyzed.
The adversary uses one of the graphs as background knowledge
to attack the other graph. This is similar to the setting used by
Narayanan and Shmatikov [2]. One of the other popular threat mod-
els [5, 18, 19] assumes that adversary knows the target degree, this
is unrealistic but easy to evaluate hence popular. We cannot con-
sider a weaker threat model because attacks [2] already exist under
the current threat model. We focus on structure based attacks as
most of the graph perturbation based schemes are designed to con-
ceal the graph structure and prevent re-identification based on node
neighborhood. However, due to its modularity the threat model and
learning model can incorporate a variety of adversaries which are
much more advanced. We describe them in greater detail below.

3.2 Graph Generation
Benchmarking an anonymity scheme begins with generating
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a pair of graphs with an intersecting node set from real world
graphs [2]. Each graph is anonymized using the scheme to be bench-
marked. We treat one graph as the target graph (mimicking the san-
itized version released) and the other graph as the auxiliary graph
at attacker’s disposal (side information for linking identities), these
can be interchanged. We constrain the attacker to only have the
knowledge of graph structure. This is the least amount of informa-
tion which is released and inclusion of any other information such
as node or edge attributes only strengthens the attacker.

We take a real world social network G = (V,E) and randomly
partition the set of nodes V into two subsets V1 and V2 with an
overlap αV (measured by Jaccard Coefficient; see, Appendix A).
An overlap of αV is obtained by randomly partitioning V into three
subsets VA, VB and VC with sizes 1−αV

2
· |V |, αV · |V | and 1−αV

2
·

|V | respectively and setting V1 = VA ∪ VB and V2 = VB ∪ VC , in
our experiments we use αV = 0.25. Finally, we create two graphs
G1 and G2 as node induced sub-graphs of G using vertex sets V1

and V2. G1 and G2 are subsequently anonymized using the scheme
to be benchmarked, the anonymized auxiliary and sanitized graphs
thus produced are called Gaux and Gsan respectively. We refer to
their vertex sets as Vaux and Vsan respectively, note that Vaux = V1

and Vsan = V2. The nodes and edges are stripped of all identifiers,
we only consider the structure of the graphs in further discussions.
This allows us to quantify the efficacy of the anonymization scheme
in preserving privacy by measuring the success of structure-based
re-identification. The efficacy is measured in terms of success of
the classifier in differentiating whether two individuals belonging
to social graphs Gaux and Gsan are identical or not.

3.3 The Classification Framework
We propose a machine learning based classification framework

that uses structure-based re-identification to measure the privacy
leak in social networks. The classifier can quantify anonymity of
social graph anonymization schemes; the framework is based on
an ensemble of randomly trained decision trees known as random
decision forest [28]. The forest is trained to classify node pairs
(naux, nsan) such that naux ∈ Vaux and nsan ∈ Vsan as identical
or non-identical using the features of each node.

3.3.1 Node Features
Node similarity metrics have been well known to significantly

improve the confidence and accuracy in predicting links between
nodes [21, 29]. Degree distribution is a fundamental property of
social networks [30] and a node can be uniquely identified by its
neighborhood degree distribution [18]. Our framework uses the
degree distribution of 1-hop and 2-hop neighbors as features to de-
scribe a node. These are generic graph features which are not tied
to any anonymization scheme and perform well for a variety of
learning tasks [3, 31]. Both 1-hop and 2-hop features are computed
separately and then concatenated. Each component in the feature
vector quantizes the number of nodes with degree in a given range,
as shown in Figure 1, c0 = 8 means there are 8 1-hop nodes with
degrees in the range (0-50), c1 = 4 implies 4 1-hop nodes with de-
grees in range (51-100) and so on. In our experiments we chose the
vector length to be 21 and bin size to be 50, all degrees exceeding
the maximum range are included in the last bin.

c0 = 8 c1 = 4 c2 = 0

size = 50

21 bins (1-hop) 21 bins (2-hop)

42 bins (total)

. . .

. . .
c39 = 3 c40 = 1 c41 = 0

Figure 1: Example node feature vector

We also use the Silhouette Coefficient (see, Appendix A) of de-
grees of a node pair as a feature. The modularity of features allows
us to tune them according to the adversary, e.g. for a directed graph
the features could be expanded to contain the in and out degree of
1-hop and 2-hop neighborhoods instead of combining the degrees.

3.3.2 Training
One of our key contributions is presenting a mechanism to train

a model in the absence of ground truth or seed mappings across
auxiliary and sanitized data. In the scenario of a graph release an
adversary does not possess the real data but a damaged version of
it. The adversary attempts to splice it with the data at their disposal
to re-identify individuals. Training a machine learning model is
tricky in such a scenario as we need access to the ground truth. To
re-identify nodes with high confidence it is important to train the
model with high quality data. Ideally, the model should be trained by
generating auxiliary and sanitized graphs from the same graph that
was used to generate Gaux and Gsan. Providing the adversary ac-
cess to such data makes it too strong and unrealistic. We circumvent
this by training the classifier using node pairs fromGaux andGsan,
both the graphs are split again to produce two sets of overlapping
graphs. This time however, we do not apply any anonymization on
the generated graphs. This allows us to sample node pairs from the
overlapping sets for which we know the ground truth. Data is sam-
pled from each set and merged to train the classifier. Only a rough
estimate of the overlap between auxiliary and sanitized graphs is
sufficient to sample data thus producing node pairs which closely
resemble those being attacked.

We also experimented by sampling training data by generating
auxiliary and sanitized graph from a different but similar social net-
work to that under attack. The learning task is transferable [3, 31]
thus cross training works as well but we get better results by train-
ing from a distribution which is as close to the original as possible.
Splitting Gaux and Gsan to train simulates training under ideal
circumstances as closely as possible. Gaux and Gsan represent a
damaged version of the original graph (G1 and G2 respectively),
however, under our threat model they are the closest dataset to that
being attacked and hence we only need to split them as they have
already undergone perturbation. Training the forest allows it to
learn features that optimize the classification success. The trees are
trained by randomly sampling training data and node features; we
use a forest of 400 trees.

3.3.3 Classification
After training the decision forest a pair of feature vectors

(vaux, vsan) representing the node pair (naux, nsan) sampled from
Gaux and Gsan is passed through the forest. Each tree assigns a
probability to the pair of being identical or non-identical. After the
node pair has passed through all the trees we average the predictions
to reach a final prediction.

4. EVALUATION AND RESULTS:
ANONYMITY vs. UTILITY

We benchmark graph anonymization schemes based on quality
of anonymization and utility preservation. For each of the six so-
cial graph anonymization schemes – RSP, RAD, RSW, REP, KDA
and 1HKA, we measure how de-anonymization success and utility
vary versus strength of anonymization. Intuitively, if an increase in
anonymization does not produce a commensurate decrease in de-
anonymization success while substantially diminishing utility then
such an anonymization scheme is considered less favorably. All the
schemes being evaluated provide varying levels of anonymity by
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controlling the level of graph perturbation. We note that increasing
perturbation does not necessarily provide more anonymity in all
cases but it always affects utility adversely.

The schemes are evaluated using two publicly available
real world social graphs – Flickr (nodes = 80 513, edges =
5 899 882) [32] and Facebook New Orleans dataset (nodes = 63 731,
edges = 817 090) [33]. The Flickr graphs generated for benchmark-
ing (see, Section 3.2) have about 50 000 nodes and 2 310 000 edges
while graphs for Facebook have about 40 000 nodes and 320 000
edges prior to any anonymization.
Interpreting the ROC curves. For a given social graph anonymiza-
tion scheme and anonymity strength, each node pair passed through
the classifier is assigned a score in [0, 1]. This procedure is carried
out for more than a million randomly selected node pairs to analyze
the success of structure-based re-identification. The score assigned
to each node pair signifies its likelihood of being non-identical. An
ideal classifier will output 1 whenever it sees a non-identical node
pair and a 0 whenever it sees an identical node pair. The Receiver
Operating Characteristic (ROC) curves illustrate how close the clas-
sifier is to an ideal one. It does so by measuring the True Positive
(TP) rate as the False Positive (FP) rate tolerated is varied in the
range [0, 1]. An ideal classifier gives a TP rate of 1 at FP rate 0,
whereas TP and FP are always the same for random guessing. In
practice a classifier will always make errors (FP), our goal is to max-
imize the correct classification rate (TP) for the error tolerated. The
Area Under the Curve (AUC) provides a summary of the quality of
the classifier, an ideal classifier has an AUC = 1 where as random
guessing produces a classifier with an AUC = 0.5.
Measuring Anonymity. Anonymity of a scheme is measured by
the de-anonymization success achieved as depicted by ROC curves
and the AUC (figure legend); this allows us to compare schemes.
We also compare the performance of the classifier when the graph is
simply split (denoted as GS) and no anonymization is applied (node
pairs are sampled from G1 and G2) to the case where a particular
scheme is used (node pairs are sampled from Gaux and Gsan).
Measuring Utility. Measuring utility is harder as there is no stan-
dard metric to capture it and is usage dependent. An anonymization
scheme might perfectly preserve the degree distribution of a graph
while damaging other properties. We look at some fundamental
utility metrics as they vary with anonymization level: (i) Degree dis-
tribution (DD) – it measures the frequency of degrees as they grow
and is an important measure of a small world graph. (ii) Joint degree
distribution (JDD) – the distribution of node degree pairs between
which edges exist. (iii) Average degree connectivity (ADC) – the
average nearest neighbor degree of nodes with degree k. (iv) Degree
centrality (DC) – the fraction of total nodes a node is connected to.
(v) Eigenvector centrality (EVC) – it measures a node’s importance
based on its connection to other important nodes. For a vertex v it
is defined as the vth component of the eigenvector associated with
the largest eigenvalue of the adjacency matrix of the graph.

These properties are fundamental to social graphs and most real-
world utility metrics are derived from them. Significant damage to
these metrics adversely affects utility. Figure 2 shows the JDD of
unperturbed graphs for reference.
Implementation. The project has been implemented in Python and
run using CPython. We use a commodity laptop with 2.8 GHz
processor and 16 GB RAM for our experiments. The classifier
is trained using about 25K identical and 500K non-identical node
pairs. We classify 16K identical node pairs for Flickr and 10K for
Facebook against 1M non-identical node pairs for both graphs. To
focus on a typical social network user, only nodes with degree over
five are studied. The number of identical node pairs is lower for
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Facebook as it is sparser. Training the classifier takes about 10
minutes while classification takes about 25 minutes.

4.1 Random Sparsification (RSP)
Anonymity. Deleting edges at random limits the scope of structural
de-anonymization due to lack of information. As shown in Figure 3
the classification success diminishes with decreasing edge overlap
(as measured by Jaccard Coefficient). We introduce an edge overlap
of αE = (0.75, 0.50, 0.25) by increasing the fraction of randomly
deleted edges to produce Gaux and Gsan; αE is computed for the
common subgraph of Gaux and Gsan, the edge overlap for the
entire graph is much lower. Even after lowering αE to 0.25, enough
information remains and de-anonymization is quite successful.
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Figure 3: RSP: ROC curves

Utility. Deleting edges shows gradual and graceful decline in the
quality of the graph. (i) DD (Figure 4) – more of less preserved for
varying levels of anonymity, this is expected as edges are deleted
uniformly at random. (ii) JDD (Figure 5) – shifts towards the low
degree node pairs as deleting edges decreases the number of high
degree nodes. (iii) ADC (Figure 6) – shifts towards the origin due
to decrease in node degrees across the graph. Decrease in the range
of degrees shrinks the spectrum. (iv) EVC (Figure 7) – not much
affected, the important nodes continue to be important. However,
the decrease of degree does shift the spectrum.

4.2 Random Add/Delete (RAD)
Anonymity. RAD homogenizes the graph by decreasing the degree
of high degree nodes and increasing the degree of low degree nodes
as non-edges are more likely exist between such nodes. As a result
structural classification becomes difficult (Figure 8). We compare
the performance of our classifier by introducing graph perturbation
of a fraction k = (0.10, 0.25, 0.50) of the edges. Even at k = 0.50
de-anonymization is quite successful for both the graphs.
Utility. RAD is less forgiving of the graph properties as the graph is
pushed closer to randomness (achieved at k = 1). (i) DD (Figure 9)
– addition and deletion of edges at random makes the DD more com-
pact. The shift is disproportionate due to nature of perturbation be-
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ing biased. (ii) JDD (Figure 10) – confirms that all the node degrees
move close together. (iii) ADC (Figure 11) – shifts downwards as
low degree nodes get delinked from high degree nodes and linked
to other low degree nodes, the high degree nodes suffer a decrease
in their degree and loss of links to other high degree nodes, this
decreases their connectivity as well. Since node degrees become
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Figure 8: RAD: ROC curves

uniform the spectrum shrinks. (iv) EVC (Figure 12) – perturbation
of the neighborhood of high degree nodes decreases their degree;
however, they still retain their importance as deleting and adding
edges at random does not have a huge effect on their influence. On
the other hand low degree nodes still remain relatively unimportant
because of being primarily connected to other low degree nodes
thus producing the shift observed.
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Figure 10: RAD: Joint Degree Distribution

4.3 Random Switch (RSW)
Anonymity. RSW effects the graph properties in an unpre-
dictable manner. We introduce perturbations of a fraction k =
(0.20, 0.50, 0.85) of the number of edge pairs; smaller values of k
produced no perceptible change in ROC curves hence larger values
are picked to study variance. Figure 13 shows that even at the high-
est level of perturbation barely any additional privacy is achieved.
Preserving the DD not only adversely effects graph’s properties but
also makes it more vulnerable to structure-based re-identification.
Utility. Although DD is perfectly preserved, other graph metrics are
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0.0 0.2 0.4 0.6 0.8 1.0

False Positive

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

GS: 0.964

k = 0.20: 0.953

k = 0.50: 0.943

k = 0.85: 0.942

Flickr: Random Switch

0.0 0.2 0.4 0.6 0.8 1.0

False Positive

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

GS: 0.936

k = 0.20: 0.904

k = 0.50: 0.889

k = 0.85: 0.879

Facebook: Random Switch

Figure 13: RSW: ROC curves

profoundly damaged thus highlighting the challenges faced in pre-
serving utility in a perturbed graph. (i) DD – exactly preserved. (ii)
JDD (Figure 14) – becomes more uniform throughout the graph.
The original JDD (Figure 2) shows that edges are concentrated
among low degree nodes. Switching edges gradually spreads the
concentration towards higher degree nodes. (iii) ADC (Figure 15)
– becomes uniform as low degree and high degree nodes get linked.
(iv) EVC (Figure 16) – remains preserved for low levels of per-
turbation (k = 0.10) but the influence of nodes becomes directly
proportional to DC at highest perturbation. This is an indication of
the graph losing structure and moving towards randomness.

4.4 Random Edge Perturbation (REP)
Anonymity. Deleting a fraction of edges and adding the same frac-
tion of non-edges produces a large increase in edges overall since
the number of non-edges is several orders of magnitude higher than
edges. We introduce perturbations of µ = (10−4, 10−3, 10−2).
Figure 17 shows that denser graphs are more resilient to noise; this
is even more apparent in the case of REP which is rather damaging
to Facebook at µ = 10−3 but does little damage to Flickr.
Utility. Although we achieve a reasonable level of anonymity at
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Figure 14: RSW: Joint Degree Distribution
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Figure 15: RSW: Degree Connectivity vs. Node Degree
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Figure 16: RSW: EVC vs. DC
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Figure 17: REP: ROC curves

µ = 10−3 for Facebook it comes at the cost of utility which is sig-
nificantly damaged. Flickr resists longer but to achieve anonymity
we need to compromise utility. At µ = 10−2 both graphs are per-
turbed beyond recognition and of little use but even at this level of
perturbation Flickr still looks attackable with AUC = 0.792, where
as an attack on Facebook is same as guessing with AUC = 0.585.
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(i) DD (Figure 18) – shifts towards the right but the change is more
extreme as the proportion of non-edges introduced is orders of mag-
nitude higher. (ii) JDD (Figure 19) – gets concentrated towards the
high degree node pairs. (iii) ADC (Figure 20) – addition of edges
produces new low degree nodes that are connected to other low de-
gree nodes thus producing a dip of connectivity spectrum towards
the origin. The neighborhood of high degree nodes shows relatively
less change. (iv) EVC (Figure 21) – in contrast to RSP adding non-
edges at random does not change the DC or EVC of nodes much.
Random edges do not change the importance of nodes, hence the
spectrum is preserved. However, extreme perturbation (µ = 10−2)
causes the spectrum to shift.
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Figure 18: REP: Degree Distribution
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Figure 19: REP: Joint Degree Distribution
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Figure 20: REP: Degree Connectivity vs. Node Degree

4.5 k-Degree Anonymization (KDA)
Anonymity. KDA introduces edges among high degree nodes which
are rarer. We anonymize graphs [7] using Supergraphwhich pro-
duces a k-anonymous graph for a given number of nodes followed
by Greedy_Swap which swaps edges among node pairs till the
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Figure 21: REP: EVC vs. DC

generated graph has almost the same edge set as the original graph.
In our experiments the generated graph has at least 90% of the same
edges as the original graph. Perturbations of k = (10, 50, 100) are
introduced for analysis. As observed (Figure 22) even high values of
k does not increase the anonymity by much for either graph. Edge
insertion among high degree nodes is not large enough to mask their
true neighborhood structure whereas the low degree nodes are left
almost untouched. The result is significant damage to graph metrics
without gaining much anonymity.
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Figure 22: KDA: ROC curves

Utility. Change in the neighborhood of high degree nodes adversely
affects the properties of graph without purchasing any additional
anonymity. (i) DD (Figure 23) – flatlines for higher degree nodes
as they are fewer in number and the perturbation increases the fre-
quency of each distinct degree to a minimum value. (ii) JDD (Fig-
ure 24) – forms a checkered pattern for high degree nodes due to
introduction of new edges among high degree nodes. (iii) ADC
(Figure 25) – increases sharply for low degree nodes due to being
connected to high degree nodes whose degree has been increased.
(iv) EVC (Figure 26) – remains largely same except for vertical
patterns appearing for higher degree nodes (higher DC) due to per-
turbation in their degree.

4.6 1-hop k-Anonymization (1HKA)
Anonymity. 1HKA is inefficient for large graphs with high aver-
age node degree. The scheme ensures 1-hop k-anonymity by in-
serting edges which are in the order of 12% of the total edges for
k = 30 [25]. To analyze this scheme and circumvent the prob-
lem of inefficiency we introduce µ = (0.10, 0.25, 0.50) fraction
of edges at random in the graph. Inserting edges at random makes
structural de-anonymization harder as compared to inserting them
in a formulaic manner (as for KDA), also utility is better preserved
in this scenario. Hence the results achieved provide a lower bound
on de-anonymizability and an upper bound on utility compared to
using the actual scheme. Note that by definition 1-hop features of
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Figure 23: KDA: Degree Distribution
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Figure 24: KDA: Joint Degree Distribution
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Figure 25: KDA: Degree Connectivity vs. Node Degree

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Degree Centrality

0.00

0.01

0.02

0.03

0.04

0.05

E
ig

en
ve

ct
or

C
en

tr
al

it
y

Flickr: k-Degree Anonymity

Original

k = 10

k = 50

k = 100

0.000 0.005 0.010 0.015

Degree Centrality

0.00

0.02

0.04

0.06

0.08

0.10

E
ig

en
ve

ct
or

C
en

tr
al

it
y

Facebook: k-Degree Anonymity

Original

k = 10

k = 50

k = 100

Figure 26: KDA: EVC vs. DC

all nodes would be completely identical in this scenario therefore
they cannot be used to differentiate among node pairs any more.
The 2-hop features are still relevant; we replace the 1-hop features
by 3-hop features. This is a simple swap which is easily done in
our framework thus highlighting it’s proclivity to swift adaptation.
Figure 27 confirms that even adding a high fraction of edges does

not provide much anonymity.
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Figure 27: 1HKA: ROC curves

Utility. Random edge addition damages DD and JDD but is gentler
on other properties. (i) DD (Figure 28) – similar to REP. (ii) JDD
(Figure 29) – similar to REP, shifts diagonally as all node degrees
increases. The shift is concentrated towards the low degree nodes
as most edges are introduced in their vicinity. (iii) ADC (Figure 30)
– similar to REP. (iv) EVC (Figure 31) – similar to REP.
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Figure 28: 1HKA: Degree Distribution
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Figure 29: 1HKA: Joint Degree Distribution

5. RELATED WORK
A-posteriori analysis of re-identification probabilities is a popu-

lar [5, 18, 19] approach to quantify anonymity in anonymized so-
cial graphs. Given a threat model such analysis formulates queries
based on the adversary’s a-priori knowledge of the target and then
computes the risk of re-identification based on the induced equiva-
lence relation. Such a methodology is hard to quantify due to being
computationally intensive. The results are highly dependent on the
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Figure 30: 1HKA: Degree Connectivity vs. Node Degree
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Figure 31: 1HKA: EVC vs. DC

threat model and can only handle simple adversaries [5]. Construct-
ing optimal queries for an adversary possessing knowledge of the
target’s sub-graph is very tricky.

Hay et al. [18] present an adversary that knows some structural
information about a target in the original graph and tries to identify
it by querying the published anonymized graph. All the resulting
candidates of a query are considered equally likely and each query
is enforced to have at least k candidates. The authors also present
an adversary who explores the neighborhood of the target by per-
forming a breadth first search. This models the scenario where the
adversary has incomplete knowledge of the sub-graph around the
target. Both the adversaries are unrealistic as they do not look for a
probabilistic match or optimize for more informative edges and the
k-anonymity is based on node degree.

Bonchi et al. [5] refine the previous approach by proposing an
entropy based metric. Hay et al.measure the probability of a node
in the perturbed graph to have originated from the target, thus pro-
viding a local estimate. Bonchi et al.provide a global estimate by
computing the entropy from the distribution of belief probabilities
of the nodes being mapped to the target. The authors model an
adversary with knowledge of target’s degree and compute entropy
for a graph anonymized using RSP. These computations however,
become far too complicated and computationally infeasible for even
a slightly more potent adversary that has the knowledge of target
neighborhood instead of just the target degree.

Ji et al. [34] conduct a survey of graph anonymization
schemes based on utility preservation and their resistance to de-
anonymization attacks. The threat model used is impractical as
it does not capture a plausible scenario. Using pure graph de-
anonymization attacks to compare graph anonymization schemes is
not generalizable; for instance if an attack uses information which
is not present e.g. edge directionality [2]. If the attack uses seeds
then the results vary greatly based on the seed quality. Addition-
ally, attacks can be optimized to de-anonymize a large fraction of
nodes while sacrificing accuracy or vice-versa, they can also be

tuned to be more successful for certain nodes than others. Graph
de-anonymization attacks are not designed to serve as a measuring
tool. Our framework can easily adapt to changes in threat model and
accommodate a weak or strong adversary. This is in stark contrast
to the rigidity of structure-based de-anonymization attacks which
are time consuming to modify and cannot be upgraded or degraded
without manual effort. None of the attacks presented are successful
when the anonymized graph is published as a collection of disjoint
subgraphs. Availability of seeds would be useless as the mapping
would stop at the limit of each subgraph, our framework can han-
dle such cases with ease [3]. Most approaches are computationally
intensive (e.g. Bonchi et al. [5]) and thus heavy footed. We pro-
vide a nimble and automated alternative to benchmark social graph
anonymization schemes.

Sharad and Danezis [3] were the first to use machine learning
techniques to de-anonymize social networks. Our work goes much
beyond the scope of previous work and bridges the fundamental re-
search gap of comparing and evaluating social graph anonymization
schemes under a common framework.

6. DISCUSSION
Anonymizing high dimensional data is not a new problem, though

it keeps resurfacing in different forms. Data with a large number
of attributes are very hard to anonymize without unacceptable in-
formation loss [4]. There are exponentially many combinations of
dimensions that can be used as quasi-identifiers to mount inference
attacks. Preventing such attacks requires completely suppressing
most of the data which renders its publication moot. Our results
confirm the conventional wisdom in the scenario of social graphs.
Parameter choice. The overlap between Gaux and Gsan is set as
αV = 0.25 to model an adversary with reasonable side information
to mount an attack. A higher αV strengthens the attacker as the
side information increases; however, it does not impact the relative
success of attacks under different schemes and threat models. We set
vector length and bin size (n, b) as (21, 50) (see Section 3.3.1); the
value is chosen to accommodate higher degrees and their variation,
the choice does not impact accuracy [3]. Testing accuracy increases
monotonically with the forest size [28, 35]; Criminisi et al. [28]
obtain good results with forest size of 400, which is what we use.
We experimented by using features such as centrality, edge weights
and group membership in addition to those proposed. Complicated
features do not provide significant improvement over those used.

6.1 Risk of Re-identification
The classification framework presented quantifies the risk of re-

identification based purely on structure given a perturbation scheme.
The task of distinguishing identical node pairs from non-identical
ones captures the most basic challenge faced by the adversary. We
provide a granular graph structure-based metric to capture the like-
lihood of a node being re-identified. The classification task used by
our framework is not new and has been widely used in the litera-
ture [1, 2, 36]. The key difference is that previous results have been
reported for the global matching task rather than pairwise matching
task. The results of the global matching task are derived from the
success attained in pairwise matching task. Hay et al. [18] proposed
K-Candidate Anonymity based on the number of matches returned
by a structural query on a graph. Bonchi et al. [5] refine the def-
inition to propose k-Preimage Obfuscation which is based on an
entropy. Both these definitions rely on the success of the adversary
to find pairwise matchings of graph nodes.

Our structure-based re-identification has a high true positive rate
and a low false positive rate, leading to re-identification of an indi-
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vidual with high confidence. The re-identification rates observed are
a lower bound on the attacker’s success. Existence of more potent
structure-based re-identification cannot be ruled out. Additionally,
structure is not the only information that an adversary might pos-
sess, any side information is likely to cause further decline in false
positives. Hence, we find that none of the six schemes analyzed pro-
vide sufficient anonymity while preserving utility (see, Appendix B
Figure 32). Acceptable levels of anonymity are only achieved at
very high perturbation levels at which point data is of little use.
REP (µ = 10−2) for Facebook is the most successful scheme at
repelling structural attacks with true positive value of less than 1%
for a false positive of 0.1% and an AUC = 0.585; though not as
effective for Flickr it behaves reasonably well. We introduce ex-
treme levels of perturbation in our experiments only as a means to
study the graph behavior, perturbation at such high levels serves no
practical purpose.
Flickr. All the schemes except REP (µ = 10−2) have a TP of above
5% at a FP of 0.1% for even the most extreme level of perturbation.
This is already pretty high even if we make the very strong assump-
tion that the attacker can gather no side information for any of the
nodes attacked.
Facebook. Anonymization is more successful as compared to Flickr.
Most schemes apart from REP (µ = (10−2, 10−3)) have a TP of
around 3–5% at a FP of 0.1%. This also effects the utility of graph
metrics which are reduced. Overall, Facebook’s anonymization and
utility are more sensitive given a particular level of perturbation.

6.2 Scheme Comparison
Bearing in mind that none of the schemes analyzed here are re-

ally fit for the purpose, we provide a coarse ranking based on utility
preservation and relative anonymity. RSW and KDA are by far the
least useful schemes for anonymizing graphs. Neither provide a safe
level of anonymity even after hugely damaging the graph features.
RSP and RAD are by far the best schemes among the ones that we
have analyzed; both provide graceful and gradual degradation of
graph utility. REP and 1HKA lie in the middle. Schemes that pro-
vide k-anonymity by homogenizing the n-hop neighborhood around
nodes are computationally expensive and defenseless against sub-
graph attacks. Such schemes are very destructive to graph properties
and can be defeated by extending the features beyond n-hops.

Appendix B, Table 1 provides the concrete relation between the
deviation of DD and JDD from the original as characterized by
the Hellinger distance (see, Appendix A) and AUC of the ROC
curves. The schemes that show a lesser distance between original
and perturbed distributions preserve the distribution better. In gen-
eral schemes which produce distributions closer to the original ones
tend to allow more successful structural attacks, which supports
our analysis. Appendix B, Figure 32 shows a comparison of the
schemes for a chosen anonymization strength.
Bottom line. After careful analysis we do not believe any
scheme can guarantee anonymity while preserving utility. De-
anonymization can be seen as a utility metric as it is constructed
from graph properties and it cannot be damaged in isolation. In sum-
mary: (i) Our experiments show that properties of dense graphs are
more resilient to a proportionate perturbation which in turn makes
them more vulnerable to attacks. De-anoymization of Flickr is less
sensitive to edge perturbations than Facebook as dense graphs re-
tain sufficient information even after perturbation. Additionally,
high degree nodes are more vulnerable than low degree nodes. All
useful anonymization schemes leave a fraction of true edges intact
and only a few true friends are needed to re-identify an individual.
Thus dense graphs are more vulnerable to re-identification attacks

as compared to sparse graphs since on an average each node has
more friends. (ii) Deleting edges is less harmful than adding false
edges [5]. Introducing random edges disrupts the small world char-
acteristics of the graph by shrinking it, while removing edges at ran-
dom still leaves paths that preserve the small world features. (iii) In-
creasing perturbation does not necessarily provide more anonymity
in all cases but it always degrades utility. (iv) Formulaic and local
graph perturbation such as KDA fares worse at providing anonymity
than global graph perturbation. The interconnectivity of graphs
allows leveraging the unperturbed neighborhoods to attack the per-
turbed neighborhoods. An anonymization scheme must be global
to have any chance of providing privacy. (v) Discovery of more
potent structure-based re-identification would not alter the relative
ranking of the schemes. Structure-based re-identification which is
generalizable would always be more successful on a weaker scheme.
The classification framework presented is generic as its success in-
creases with decrease in strength of anonymization for a particular
scheme. This claim is supported by the results presented for six
different schemes.

7. CONCLUSION
It has always been easy to propose graph anonymization schemes,

but hard to assess whether they actually work. We provide a frame-
work that levels the playing field for the first time by automating the
analysis of such schemes. Quick and automated analysis empow-
ers the data holders to swiftly triage newly proposed schemes. We
show how to train a classifier in the absence of ground truth by gen-
erating subgraphs and sampling data from auxiliary and sanitized
graphs. The classifier uses node features that can adapt to changes
in threat model (as demonstrated for 1HKA) and accommodate ad-
versaries of varying strength. Incremental features allows us to
model adversaries with much more sophisticated queries based on
neighborhood and can be easily modified to include node and edge
attributes. Traditional structure-based graph attacks cannot readily
adapt to changing adversaries. Additionally, using attacks to com-
pare schemes is not ideal as vulnerability to a particular attack does
not capture the true extent of a scheme’s failure since near misses
are not considered when producing full mapping. Measuring true
positive versus false positive rate is far more granular and gives us
more information. Unlike attack based measurement our framework
does not assume a model of the adversary which can tolerate only a
certain amount of error and hence rigid. We perform a detailed anal-
ysis of six perturbation-based social graph anonymization schemes.
A thorough study of trade-off between anonymity and utility as a
function of graph perturbation is also presented.

Our threat model considers an adversary which has access to im-
perfect structural information of the graph which is used to identify
members of intersecting graphs. Both the graph at the adversary’s
disposal and the released graph are aggressively and synthetically
damaged which limits the adversary. In practice it is highly likely
that the adversary can get hold of a graph that has been damaged
as a result of organic processes which are not adversarial. In such
a scenario the attacks will be more potent and catastrophic for the
privacy of individuals whose data is released.

We believe taking a conservative approach while releasing data
is the best way forward. Even though anonymization schemes are
useful and should be employed to safeguard privacy they are not a
solution. Such schemes should be used to dissuade the curious but
honest adversary but do little to stop a malicious adversary if utility
preservation is important. Social graph anonymization schemes
and anonymization schemes dealing with high dimensional data
in general should always be backed up by legal agreements which
prohibit malicious use of data.
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APPENDIX
A. DEFINITIONS

1. Ego – A graph node around which the egonet is formed.

2. Egonet – The local network centered around an ego derived
based on some function.

3. n-hop node – A node such that the shortest path length from
the node to the ego is n.

4. n-hop network – A node induced neighborhood graph around
an ego with all n-hop nodes included. It is also known as n-
hop neighborhood.

5. Jaccard Coefficient between sets X and Y at least one of
which is non-empty is defined as: JC(X,Y ) = |X∩Y |

|X∪Y | .

6. Silhouette Coefficient of degrees of two nodes belonging to
Gaux andGsan is defined as: δ(d1, d2) = |d1−d2|

max(d1,d2)
, where

d1 = degree(naux), naux ∈ Vaux and d2 = degree(nsan),
nsan ∈ Vsan.

7. Hellinger Distance – The statistical distance H(P,Q)
between two discrete probability distributions P =
(p1, . . . , pk) and Q = (q1, . . . , qk) is defined as:

H(P,Q) = 1√
2

√∑k
i=1(
√
pi −

√
qi)2.

B. ADDITIONAL DETAILS
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Figure 32: Scheme Comparison: ROC curves

Table 1: Hellinger Distance between DD and JDD for perturbed and
unperturbed graphs and it’s effect on AUC

Flickr Facebook

DD JDD AUC DD JDD AUC

RSP (αE = 0.75) 0.109 0.570 0.959 0.062 0.295 0.926
RSP (αE = 0.50) 0.130 0.567 0.950 0.100 0.340 0.903
RSP (αE = 0.25) 0.204 0.610 0.931 0.194 0.477 0.850

RAD (k = 0.10) 0.314 0.562 0.935 0.138 0.283 0.917
RAD (k = 0.25) 0.467 0.582 0.915 0.273 0.336 0.870
RAD (k = 0.50) 0.603 0.657 0.864 0.439 0.478 0.763

REP (µ = 10−4) 0.232 0.568 0.955 0.280 0.286 0.900
REP (µ = 10−3) 0.599 0.612 0.924 0.759 0.630 0.761
REP (µ = 10−2) 0.912 0.899 0.792 0.999 1.000 0.585

1HKA (µ = 0.10) 0.318 0.562 0.936 0.141 0.269 0.917
1HKA (µ = 0.25) 0.465 0.581 0.929 0.281 0.293 0.888
1HKA (µ = 0.50) 0.584 0.606 0.920 0.428 0.338 0.845

RSW (k = 0.20) 0.000 0.170 0.953 0.000 0.084 0.904
RSW (k = 0.50) 0.000 0.268 0.943 0.000 0.143 0.889
RSW (k = 0.85) 0.000 0.350 0.942 0.000 0.203 0.879

KDA (k = 10) 0.136 0.576 0.954 0.056 0.279 0.920
KDA (k = 50) 0.260 0.793 0.950 0.125 0.485 0.907
KDA (k = 100) 0.327 0.863 0.949 0.175 0.603 0.898
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