
Payment with Dispute Resolution:
A Protocol for Reimbursing Frauds Victims

Aydin Abadi

University College London

London, UK

aydin.abadi@ucl.ac.uk

Steven J. Murdoch

University College London

London, UK

s.murdoch@ucl.ac.uk

ABSTRACT
An “Authorised Push Payment” (APP) fraud refers to a case where

fraudsters deceive a victim to make payments to bank accounts con-

trolled by them. The total amount of money stolen via APP frauds

is swiftly growing. Although regulators have provided guidelines

to improve victims’ protection, the guidelines are vague, the im-

plementation is lacking in transparency, and the victims are not

receiving sufficient protection. To facilitate victims’ reimbursement,
in this work, we propose a protocol called “Payment with Dispute

Resolution” (PwDR) and formally define it. The protocol lets an

honest victim prove its innocence to a third-party dispute resolver

while preserving the protocol participants’ privacy. It makes black-

box use of a standard online banking system. We implement its

most computationally-intensive subroutine and analyse its runtime.

We also evaluate its asymptotic cost. Our evaluation indicates that

the protocol is efficient. It imposes only 𝑂 (1) overheads to the cus-

tomer and bank. Moreover, it takes a dispute resolver only 0.09

milliseconds to settle a dispute between the two parties.

CCS CONCEPTS
• Security and privacy→ Cryptography.

KEYWORDS
Financial fraud, dispute resolution, transparency, accountability

ACM Reference Format:
Aydin Abadi and Steven J. Murdoch. 2023. Payment with Dispute Resolution:

A Protocol for Reimbursing Frauds Victims. In ACM ASIA Conference on
Computer and Communications Security (ASIA CCS ’23), July 10–14, 2023,
Melbourne, VIC, Australia. ACM, New York, NY, USA, 15 pages. https://doi.

org/10.1145/3579856.3595789

1 INTRODUCTION
An “Authorised Push Payment” (APP) fraud is a type of cyber-crime

where a fraudster tricks a victim into making an authorised on-

line payment into an account controlled by the fraudster. The APP

fraud has various variants, such as romance, investment, or invoice

fraud [36]. The total amount of money lost to APP fraud is substan-

tial. According to statistics collected from the UK banking industry

by “UK Finance”, in the first half of 2021, a total of £355 million

was lost to APP frauds. Losses have increased by 71% compared

This work is licensed under a Creative Commons Attribution International

4.0 License.

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0098-9/23/07.

https://doi.org/10.1145/3579856.3595789

to those reported in the same period in 2020 and now makes up

almost half of banking fraud losses in the UK [35]. APP fraud is a

global phenomenon. According to the FBI, victims of APP fraud

reported to it at least a total of $419 million losses, in 2020 [17].

Recently, Interpol warned its member countries about a variant of

APP fraud called investment fraud via dating software [34].

Although the amount of money lost via APP frauds and the

number of cases have been significantly increasing, the victims

are not receiving enough protection. In the first half of 2021, only

42% of the stolen funds returned to victims of APP frauds in the

UK [35]. Despite the UK’s financial regulators (unlike US and EU)

having provided specific reimbursement regulations to financial

institutes to improve APP fraud victims’ protection, these regula-

tions are ambiguous and open to interpretation. Also, there exists
no transparent and uniform mechanism via which honest victims
can prove their innocence. Currently, each bank uses its own ad-hoc

(manual) dispute resolution process which is not transparent to

customers, regulators, or consumer protection organisations. It is

not uniform among all banks and even among those organisations

that settle disputes between banks and customers. To date, the APP

fraud problem has been overlooked by the information security

and cryptography research communities.

In this work, to facilitate the compensation of APP frauds victims,

we propose a protocol called “Payment with Dispute Resolution”

(PwDR), present its formal definition, and prove the protocol’s secu-

rity. The PwDR lets a victim (of an APP fraud) independently prove

its innocence to a (potentially semi-honest) third-party neutral dis-

pute resolver, in order to be reimbursed. We identify three crucial

properties that such a scheme should possess; namely, (a) security

against a malicious victim: a malicious victim who is not qualified

for reimbursement should not be reimbursed, (b) security against

a malicious bank: a malicious bank cannot disqualify an honest

victim from being reimbursed, and (c) privacy: the customer’s and

bank’s messages remain confidential from non-participants of the

scheme, and a party which resolves dispute learns as little infor-

mation as possible. The PwDR makes black-box use of a standard

online banking system, hence it can rely on and extend the security

of the existing banking system. It automates the implementation of

reimbursement regulations where possible and distributes the role

of making more subjective decisions among multiple auditors.

The PwDR offers transparency by (i) accurately formalising reim-

bursements’ conditions: it presents an accurate publicly available

formalisation capturing the circumstances under which a customer

is reimbursed, (ii) offering traceability: it lets parties’ performance

be tracked, and (iii) providing an evidence-based final decision: it

requires the reasons leading to the final decision to be accessible

and consistent with the reimbursements’ conditions and parties’

855

https://doi.org/10.1145/3579856.3595789
https://doi.org/10.1145/3579856.3595789
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3579856.3595789
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579856.3595789&domain=pdf&date_stamp=2023-07-10

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Aydin Abadi and Steven J. Murdoch

actions. It also offers accountability, as it is equipped with auditing

mechanisms that help identify the party liable for an APP fraud

loss. The auditing mechanisms themselves are accompanied by

our novel lightweight privacy-preserving threshold voting protocols,

which let auditors vote privately without having to worry about

being retaliated against, for their votes. Our voting protocols can

be of independent interest. We analyse the PwDR’s cost via both

asymptotic and runtime evaluation. The evaluation indicates that

the protocol is efficient. The customer’s and bank’s complexity is

constant,𝑂 (1). It only takes 0.09 milliseconds for a dispute resolver

to settle a dispute between the two parties.

2 BACKGROUND
Losses resulting from APP fraud fall outside legislation that pro-

tects customers from “unauthorised” payments (e.g., the Payment

Services Directive 2 in the EU and the Electronic Fund Transfer

Act in the US). Liability for APP frauds has largely remained with

victims who authorise payments. In the UK, there have been efforts

to protect the victims. In 2016, the UK’s consumer protection or-

ganisation, called “Which?”, submitted a super-complaint to the

“Financial Conduct Authority” (FCA) and raised its concerns that

despite the APP fraud rate is growing, victims do not have enough

protection [18]. Since then, the FCA has been collaborating with

financial institutions to develop several initiatives that could im-

prove the response when frauds occur. As a result, the “Contingent

Reimbursement Model” (CRM) code [26] was proposed. It lays out

a set of requirements and explains under which circumstances cus-

tomers should be reimbursed by their financial institutions when

they fall victim to an APP fraud.

Although the CRM code is a vital guideline for protecting the

victims of fraud, some aspects of it are vague and open to interpre-

tation. For instance, in 2020, the “Financial Ombudsman Service”

(which settles complaints between consumers and businesses) had

an “overall impression” that firms are applying the CRM code in-

consistently and in some cases incorrectly, which resulted in failing

to reimburse victims in cases anticipated by this code [33].

3 RELATEDWORK
3.1 Authorised Push Payment Fraud
Anderson et al. [6] provide an overview of APP frauds and highlight

that although the (CRM) code would urge banks to accept more

liability for APP frauds, it remains to be seen how this will evolve as

fraudsters will continuously try to figure out how bank systems can

facilitate misdirection attacks. Taylor et al. [32] analyse the CRM
code from legal and practical perspectives. They state that this

code’s proper implementation would make considerable advances

to protect victims of APP frauds. Nevertheless, they also argue that

the code is still ambiguous. Kjorven [23] investigates whether banks

or customers should be liable for customers’ financial loss to online

frauds including APP ones, under Scandinavian and European law.

The author states that consumers are often left to deal with the

losses caused by APP frauds. She concludes that this should change

and a larger portion of the losses should be allocated to banks.

3.2 Dispute Resolution
In payment platforms, dispute resolutionmechanisms can be broadly

split into two classes, (a) centralised and (b) decentralised. In the

former class, at any point in time, a single party tries to settle a

dispute. In particular, if a customer disputes having made or autho-

rised a transaction, then the related bank tries directly settle the

dispute with the customer. However, banks’ terms and conditions

(T&C) can complicate the dispute resolution process. If they do not

reach an agreement, the customer can take its case to a third party

(e.g., Financial Ombudsman Service or court) to settle the dispute.

In 2000, Bohm et al. [9] analysed different terms of banks in the UK.

They argued that the approach taken by banks is unfair to their

customers in some cases. Later, Anderson [5] points out that the

move to online banking led many financial institutions to impose

T&C that ultimately would shift the burden of proof in dispute

to the customer. Becker et al. [7] investigate to what extent bank
customers know the T&C they signed up for. Their study suggests

that only 35% of customers fully understand T&C.

Now we turn our attention to the latter class, i.e., decentralised

dispute resolution. After the invention of blockchain technology

and especially its vital side-product, smart contract, researchers

considered the possibility of resolving disputes in a decentralised

manner by relying on smart contracts. Such a possibility has been

discussed and studied by the law research community, e.g., in

[10, 27, 28]. Moreover, various ad-hoc blockchain-based crypto-

graphic protocols have been proposed to resolve disputes in dif-

ferent contexts and settings. We briefly explain a few of them.

Dziembowski et al. [14] propose FairSwap, an efficient protocol

that lets a seller and buyer fairly exchange digital items and coins.

It is mainly based on a Merkle tree and Ethereum smart contracts

which can efficiently resolve a dispute between the seller and buyer

when the two parties disagree. Recently, researchers in [15] pro-

pose OPTISWAP that improves FairSwap’s performance. Similar to

FairSwap, OPTISWAP uses a Merkle tree and smart contract, but

it uses an interactive dispute resolution protocol. Abadi et al. [4]
propose a protocol that allows a fair exchange of digital coins and

a certain digital service, called “proofs of data retrievability”. To

efficiently settle disputes between a seller and a buyer, the protocol

uses blockchain, Merkle tree, and a third-party arbiter.

However, (the above) fair exchange schemes (including those

that use blockchain and Merkle tree) cannot fully solve the prob-

lem that PwDR solves; because (1) PwDR captures the generic case

where users use online banking and fiat currency to transfer money,

whereas in the fair exchange protocols party must have and trade
in cryptocurrency, and (2) PwDR captures various variants of APP

fraud (e.g., CEO, romance, or invoice) where victims do not neces-

sarily expect to receive an item in exchange for the money they

transfer, whereas fair exchange protocols only allow parties want

to exchange digital items, e.g., coins and files/services. Thus, PwDR

offers a generic solution that fair exchange protocols cannot offer.

In the context of verifiable (cloud) computation, Dong et al. [13]
use a combination of smart contracts, game theory, and a third-party

arbiter to design an efficient protocol that lets a client outsource

its expensive computation to the cloud servers such that it can

efficiently check the result’s correctness. In the case of dispute,

the protocol lets the parties invoke the arbiter which efficiently

settles the dispute with the assistance of the smart contract. Green

et al. [20] propose a variant of payment channel [29] (which im-

proves cryptocurrencies’ scalability) while preserving the users’

anonymity. In this scheme, in the case of a dispute between two

856

Payment with Dispute Resolution:
A Protocol for Reimbursing Frauds Victims ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

parties, they can send a set of proofs to a smart contract that settles

the disputes between the two.

Thus, although many dispute resolution solutions have been

proposed, to date, no (centralised or decentralised) solution exists

to resolve disputes in the context of APP frauds.

4 PRELIMINARIES
4.1 Taxonomy and Assumptions
A payment with a dispute resolution scheme involves six types of

parties. Below, we informally explain each type of party’s role. We

will provide a formal definition of the scheme in Section 6.

• Customer (C): it is a customer of a bank. We call a customer a

victim after it falls victim to an APP fraud. We assume a victim

is corrupted by a non-colluding active (or malicious) adversary.

• Bank (B): it is a regular bank providing online banking. We

assume it is corrupted by a non-colluding active adversary. We

assume any change to the online banking system’s source code

is transparent and can be detected.

• Smart contract (S): it is a standard smart contract of a public

blockchain (e.g., Ethereum). It mainly acts as a tamper-proof

public bulletin board to store different parties’ messages.

• Certificate generator (G): it is a trusted third party (e.g., registry

office) which provides signed digital certificates (e.g., certificate

of disability, divorce) to customers.

• A committee of auditors (D
1
, ...,D𝑛): it consists of trusted third-

party authorities or regulators (e.g., FCA, financial ombudsman

service). They compile complaints and provide their verdicts.

We assume they interacted with each other once, to agree on a

secret key,
¯𝑘

0
, and a pair of keys (𝑝𝑘D, 𝑠𝑘D) of an asymmetric

key encryption secure under a Chosen-Plaintext Attack (CPA).

• Dispute resolver (DR): it is an aggregator of auditors’ votes

(e.g., public court). Given a collection of votes, it extracts and

announces the final verdict. We assume it is corrupted by a non-

colluding passive adversary. We assume C and B use a secure

channel when they send a message directly to DR.

4.2 Digital Signature
A digital signature is a scheme for verifying the authenticity of

digital messages and is formally defined in [22] as below.

Definition 1. A signature scheme involves three algorithms; namely,

(Sig.keyGen, Sig.sign, Sig.ver) that are defined as follows. (1)

Sig.keyGen(1_) → (𝑠𝑘, 𝑝𝑘) is a probabilistic algorithm run by

a signer. It takes as input a security parameter. It outputs a key

pair: (𝑠𝑘, 𝑝𝑘), consisting of secret key 𝑠𝑘 , and public key 𝑝𝑘 . (2)

Sig.sign(𝑠𝑘, 𝑝𝑘,𝑢) → 𝑠𝑖𝑔 is an algorithm run by the signer. It

takes as input key pair: (𝑠𝑘, 𝑝𝑘) and a message: 𝑢. It outputs a

signature: 𝑠𝑖𝑔. (3) Sig.ver(𝑝𝑘,𝑢, 𝑠𝑖𝑔) → ℎ ∈ {0, 1} is an algorithm

run by a verifier. It takes as input public key: 𝑝𝑘 , message: 𝑢, and

signature: 𝑠𝑖𝑔. It checks the signature’s validity. If the verification

passes, then it outputs 1; otherwise, it outputs 0.

A digital signature scheme must meet two properties: (1) Correct-

ness: for every input𝑢 it holds that: 𝑃𝑟

[
Sig.ver(𝑝𝑘,𝑢, Sig.sign(𝑠𝑘,

𝑝𝑘, 𝑢)) = 1 : Sig.keyGen(1_) → (𝑠𝑘, 𝑝𝑘)
]
= 1. And (2) Existential

unforgeability under chosen message attacks: a probabilistic poly-
nomial time (PPT) adversary that obtains 𝑝𝑘 and has access to a

signing oracle for messages of its choice, cannot create a valid pair

(𝑢∗, 𝑠𝑖𝑔∗) for a new message 𝑢∗, except with a small probability, 𝜎 .

Formally: 𝑃𝑟

[
𝑢∗ ∉ 𝑄 ∧ Sig.ver(𝑝𝑘,𝑢∗, 𝑠𝑖𝑔∗) = 1 : Sig.keyGen(1_) →

(𝑠𝑘, 𝑝𝑘),ASig.sign(𝑠𝑘,) (𝑝𝑘) → (𝑢∗, 𝑠𝑖𝑔∗)
]
≤ ` (_) , where𝑄 is the set of

queries that A sent to the oracle.

4.3 Smart Contract
A smart contract is a computer program/code; it encodes the terms

and conditions of an agreement between parties and often contains

a set of variables and functions. A smart contract code is stored

on a blockchain and is maintained by the miners who maintain

the blockchain. When (a function of) a smart contract is triggered

by an external party, every miner executes the smart contract’s

code. The program execution’s correctness is guaranteed by the

security of the underlying blockchain. Ethereum [37] has been the

most predominant cryptocurrency framework that lets users define

arbitrary smart contracts.

4.4 Commitment Scheme
A commitment scheme involves two parties, sender and receiver,
and includes two phases: commit and open. In the commit phase, the

sender commits to a message 𝑥 as Com(𝑥, 𝑟) = Com𝑥 , that involves a
secret value, 𝑟 . In the open phase, the sender sends the opening ¥𝑥 :=

(𝑥, 𝑟) to the receiver which verifies its correctness: Ver(Com𝑥 , ¥𝑥)
?

= 1

and accepts if the output is 1. A commitment scheme satisfies two

properties, (a) hiding: it is infeasible for an adversary to learn any

information about the message, and (b) binding: it is infeasible for
an adversary to open a commitment to different values than the

one used in the commit phase.

4.5 Statement Agreement Protocol
The “Statement Agreement Protocol” (SAP) proposed in [4] lets

two mutually distrusted parties, e.g., B and C, efficiently agree

on a private statement, 𝜋 . The SAP satisfies four properties: (1)

neither party can convince a third-party verifier that it has agreed

with its counter-party on a different statement than the one both

parties previously agreed on, (2) after they agree on a statement, an

honest party can (almost) always prove to the verifier that it has the

agreement, (3) the privacy of the statement is preserved (from the

public), and (4) after both parties reach an agreement, neither can

deny it. It assumes that each party has a blockchain public address,

𝑎𝑑𝑟R (where R ∈ {B, C}). Below, we restate the SAP.
(1) Initiate. SAP.init(1_, 𝑎𝑑𝑟B, 𝑎𝑑𝑟C, 𝜋).

The following steps are taken by B.
(a) Deploys a smart contract that states both parties’ addresses,

𝑎𝑑𝑟B and 𝑎𝑑𝑟C . Let 𝑎𝑑𝑟SAP be the deployed contract’s address.

(b) Picks a random value 𝑟 , and commits to 𝜋 as Com(𝜋, 𝑟) = 𝑔B .

It sends 𝑎𝑑𝑟
SAP

and ¥𝜋 := (𝜋, 𝑟) to C, and 𝑔B to the contract.

(2) Agreement. SAP.agree(𝜋, 𝑟, 𝑔B , 𝑎𝑑𝑟B, 𝑎𝑑𝑟SAP).
The following steps are taken by C.

(a) Checks if 𝑔B was sent from 𝑎𝑑𝑟B , and checks locally Ver(𝑔B ,
¥𝜋) = 1.

(b) If the checks pass, it sets 𝑏 = 1, computes locally Com(𝜋, 𝑟) =
𝑔C , and sends𝑔C to the contract. Else, it sets𝑏 = 0 and𝑔C = ⊥.

(3) Prove. For either B or C to prove, it sends ¥𝜋 := (𝜋, 𝑟) to the

smart contract.

(4) Verify. SAP.verify(¥𝜋,𝑔B , 𝑔C , 𝑎𝑑𝑟B, 𝑎𝑑𝑟C).
The following steps are taken by the smart contract.

857

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Aydin Abadi and Steven J. Murdoch

(a) Ensures𝑔B and𝑔C were sent from 𝑎𝑑𝑟B and 𝑎𝑑𝑟C respectively.

It also ensures Ver(𝑔B , ¥𝜋) = Ver(𝑔C , ¥𝜋) = 1.

(b) Outputs 𝑠 = 1, if the checks in steps 4a pass. It outputs 𝑠 = 0,

otherwise.

4.6 Pseudorandom Function
A pseudorandom function is a deterministic function that takes a

key of length Λ and an input; it outputs a value indistinguishable

from that of a truly random function [22]. In this paper, we use the

pseudorandom function: PRF : {0, 1}Λ × {0, 1}∗ → F𝑝 , where 𝑝 is a

large prime number, |𝑝 | = _, and (Λ, _) are the security parameters.

4.7 Bloom Filter
A Bloom filter [8] is a compact data structure that lets us efficiently

check an element membership. It is an array of 𝑚 bits (initially

all set to zero), that represents 𝑛 elements. It is accompanied by

𝑘 independent hash functions. To insert an element, all the hash

values of the element are computed and their corresponding bits

in the filter are set to 1. To check an element membership, all its

hash values are re-computed and checked whether all are set to 1

in the filter. If all the corresponding bits are 1, then the element is

probably in the filter; otherwise, it is not. In this work, we require

that a Bloom filter uses cryptographic hash functions. In the paper’s

full version [3], we explain how its parameters can be set.

5 CHALLENGES TO OVERCOME
Our starting point in defining and designing a payment with dis-

pute resolution scheme is the CRM code, as this code (although

vaguely) sets out the primary requirements a victim must meet to

be reimbursed. To design such a scheme, we need to address several

challenges. The rest of this section outlines these challenges.

5.1 Challenge 1: Lack of Transparent Logs
In the current online banking system, during a payment journey,

messages exchanged between a customer and a bank are logged by

the bank and are not accessible to the customer without the bank’s

collaboration. Even if the bank provides access to the transaction

logs, there is no guarantee that the logs have remained intact.

Due to the lack of a transparent logging mechanism, a customer

or bank can wrongly claim that (a) it has sent a certain message or

warning to its counter-party or (b) it has never received a certain

message. Thus, it would be hard for an honest party to prove its

innocence. To address this challenge, our scheme will use a smart

contract to which each party sends its messages.

5.2 Challenge 2: Lack of Effective Warning’s
Accurate Definition in Banking

One of the determining factors in the process of allocating liability

to an APP fraud victim is following “warning(s)”, according to the

CRM code. However, there exists no publicly available study on the

effectiveness of banks’ warnings. So, we cannot hold a customer

accountable for becoming a fraud victim, even if the related warn-

ings are ignored. Also, currently, banks assess whether their own

warnings are effective. But, in a fair process, such an assessment is

conducted by a neutral third party.

To address these challenges, we let a warning’s effectiveness

be determined on a case-by-case basis after an APP fraud occurs.

The protocol lets a victim challenge a certain warning whose ef-

fectiveness will be assessed by a committee, i.e., a set of auditors.
In this setting, each auditor provides its (encoded) verdict to the

smart contract, from which a dispute resolver retrieves all verdicts

to learn the final one. The scheme ensures that the final verdict

is in the customer’s favour if at least a threshold of the auditors

voted so. Thus, unlike the traditional setting where a central party

determines a warning’s effectiveness, which is error-prone, we let

a collection of auditors determine it.

5.3 Challenge 3: Linking Off-chain Payments
with a Smart Contract

Recall that an APP fraud occurs when a payment is made. In the

case where a bank sends (to the smart contract) a confirmation of

payment message, it is not possible to automatically validate such

a claim, as the money transfer occurs outside of the blockchain

network. To address this challenge, our scheme lets a customer

raise a dispute and report it to the smart contract when it detects

an inconsistency. In this case, the above auditors investigate and

provide their verdicts to the smart contract. Then, dispute resolver

DR extracts them and announces the final verdict.

5.4 Challenge 4: Preserving Privacy
Although the use of a public logging mechanism is vital in resolving

disputes transparently, if it does not use a privacy-preserving mech-

anism, parties’ privacy would be violated. To protect the privacy of

the bank’s and customers’ messages from the public, our scheme

lets them provably agree on encoding-decoding tokens with which

they can encode their messages.

Later, either party can provide the token to a third party (e.g.,D𝑖)

which checks the token’s correctness, and decodes the messages. To

protect the privacy of the committee members’ verdicts from DR,
the scheme ensures that DR learns only the final verdict without

being able to link a verdict to a specific auditor or even learn the

number of yes/1 and no/0 votes. To this end, we develop and use

novel threshold voting protocols.

6 DEFINITION OF PAYMENTWITH DISPUTE
RESOLUTION SCHEME

This section outlines a formal definition of the paymentwith dispute

resolution (pwdr). We refer readers to the paper’s full version [3]

for a more detailed formal definition.

Definition 2. A pwdr involves six types of entities; namely, bank

B, customer C, smart contract S, certificate generator G, set of
auditorsD : {D

1
, ...,D𝑛}, and dispute resolverDR. It also includes

the following algorithms.

• keyGen(1_) → (𝑠𝑘, 𝑝𝑘). It is run independently by G and one of

the auditors, D𝑗 . It generates and outputs a pair of secret keys

𝑠𝑘 := (𝑠𝑘G, 𝑠𝑘D) and public keys 𝑝𝑘 := (𝑝𝑘G, 𝑝𝑘D), where 𝑠𝑘D
may include multiple secret keys.

• bankInit(1_) → (𝑇, 𝑝𝑝, 𝒍). It is run byB. It outputs an encoding-
decoding token 𝑇 (where 𝑇 := (𝑇

1
,𝑇

2
), each 𝑇𝑖 contains a secret

value ¥𝜋𝑖 and its public witness 𝑔𝑖), set of public parameters 𝑝𝑝

(including a threshold parameter 𝑒), and empty list 𝒍 .
• customerInit(1_,𝑇 , 𝑝𝑝) → 𝑎. It is run by C. It is an initiation

algorithm that checks the correctness of the elements in 𝑇 and

𝑝𝑝 . If the checks pass, it outputs 1. Else, it outputs 0.

• genUpdateRequest(𝑇, 𝑓 , 𝒍) → �̂�
(C)
1

. It is run by C. It uses the
new payee’s detail 𝑓 and encoding algorithm Encode(𝑇

1
, .) to

generate an encoded update request �̂�
(C)
1

. It outputs �̂�
(C)
1

.

• insertNewPayee(�̂� (C)
1

, 𝒍) → ˆ𝒍 . It is run by S. It inserts a new

payee’s detail into 𝒍 and outputs an updated list
ˆ𝒍 .

858

Payment with Dispute Resolution:
A Protocol for Reimbursing Frauds Victims ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

• genWarning(𝑇, ˆ𝒍, 𝑎𝑢𝑥) → �̂�
(B)
1

. It is run by B. It outputs an

encoded (warning) message �̂�
(B)
1

, with the help of auxiliary data

𝑎𝑢𝑥 and Encode(𝑇
1
, .), where the plaintextmessage is either “pass”

or “warning” string.

• genPaymentRequest(𝑇, 𝑖𝑛𝑓 , ˆ𝒍, �̂�
(B)
1
) → �̂�

(C)
2

. It is run by C. It
generates an encoded payment request �̂�

(C)
2

, with the help of

new payment’s detail 𝑖𝑛𝑓 and Encode(𝑇
1
, .). It outputs �̂� (C)

2
.

• makePayment(𝑇,�̂� (C)
2
) → �̂�

(B)
2

. It is run by B. It generates and
outputs an encoded message �̂�

(B)
2

for confirmation of payment.

• genComplaint(�̂� (B)
1

, �̂�
(B)
2

,𝑇 , 𝑝𝑘, 𝑎𝑢𝑥 𝑓) → (𝑧, ¥̂𝜋). It is run by C.
It generates complaints with the help of auxiliary data 𝑎𝑢𝑥 𝑓 . If

C wants to complain that (i) “pass” message should have been a

warning or (ii) no message was provided, it sets 𝑧
1
to “challenge

message”. If its complaint is about the warning’s effectiveness, it

sets 𝑧
2
to a combination of an evidence 𝑢 ∈ 𝑎𝑢𝑥 𝑓 , the evidence’s

certificate 𝑠𝑖𝑔 ∈ 𝑎𝑢𝑥 𝑓 , the certificate’s public parameter, and

“challenge warning”, where the certificate is obtained from G via

a query, 𝑄 . If its complaint is about the payment, it sets 𝑧
3
to

“challenge payment”. It generates and outputs (i) encoded com-

plaints 𝑧 using Encode(𝑇
1
, .), and (ii) encoded secret parameters

¥̂𝜋 using another encoding algorithm
¯Encode(𝑝𝑘D, .).

• verComplaint(𝑧, ¥̂𝜋,𝑔, �̂�, ˆ𝒍, 𝑗, 𝑠𝑘D, 𝑎𝑢𝑥, 𝑝𝑝) → �̂� 𝑗 . It is run by ev-

ery D𝑗 . It compiles 𝑗-th auditor’s complaints. It initially sets

parameters as 𝑤
1, 𝑗 = 𝑤

2, 𝑗 = 𝑤
3, 𝑗 = 𝑤

4, 𝑗 = 0. If the complaint

in 𝑧
1
is valid, it sets 𝑤

1, 𝑗 = 1. If the certificate in 𝑧
2
is valid, it

sets 𝑤
3, 𝑗 = 1. It checks the warning’s effectiveness, by running

checkWarning(.). If it is not effective, i.e., checkWarning(𝑚 (B)
1
) =

0, it sets𝑤
2, 𝑗 = 1. Also, if the payment was indeed made, it sets

𝑤
4, 𝑗 = 1. It outputs encoded verdicts �̂� 𝑗 = [�̂�1, 𝑗 , �̂�2, 𝑗 , �̂�3, 𝑗 , �̂�4, 𝑗] for

𝑗-th auditor.

• resDispute(𝑇
2
, �̂�, 𝑝𝑝) → 𝒗. It is run by DR. It aggregates all

encoded verdicts �̂� = [�̂�
1
, ..., �̂�𝑛] and outputs 𝒗 = [𝑣

1
, ..., 𝑣

4
],

where 𝑣𝑖 = 1 if at least 𝑒 verdicts 𝑤𝑖,𝑗 is 1; otherwise, 𝑣𝑖 = 0. If

𝑣
4
= 1 and (i) either 𝑣

1
= 1 (ii) or 𝑣

2
= 1 and 𝑣

3
= 1, then C is

reimbursed.

A pwdr has two properties, correctness and security. Correctness
requires that the payment journey is completed (in the absence of a

fraudster) without the need for (i) the honest customer to complain

and (ii) the honest bank to reimburse. A pwdr is secure if it meets

three main properties, (a) security against a malicious victim, (b)

security against a malicious bank, and (c) privacy.

Informally, security against a malicious victim states that an APP

fraud victim who is not qualified for the reimbursement should

not be reimbursed. Specifically, a corrupt victim cannot (i) make

at least the threshold of the auditors, D𝑗 s, conclude that B should

have provided a warning, although B has done so, or (ii) makeDR
conclude that the pass message was incorrectly given or a vital

warning message was missing despite only less than the threshold

ofD𝑗 s believing so, or (iii) persuade at least the threshold ofD𝑗 s to

conclude that the warning was ineffective although it was effective,

or (iv) make DR believe that the warning message was ineffective

although only less than the threshold of D𝑗 s believe it, or (v) con-

vince D𝑗 s to accept an invalid certificate, or (vi) make DR believe

that at least the threshold of D𝑗 s accepted the certificate although

they did not. Below, we formally state it.

Definition 3 (Security against a malicious victim). A pwdr is secure
against a malicious victim, if for any security parameter _, auxiliary

data 𝑎𝑢𝑥 , and PPT adversary A, there is a negligible function ` (·),
such that for experiment ExpA

1
:

keyGen(1_) → (𝑠𝑘, 𝑝𝑘)
bankInit(1_) → (𝑇, 𝑝𝑝, 𝒍)
A(1_,𝑇 , 𝑝𝑝, 𝒍) → �̂�

(C)
1

insertNewPayee(�̂� (C)
1

, 𝒍) → ˆ𝒍
genWarning(𝑇, ˆ𝒍, 𝑎𝑢𝑥) → �̂�

(B)
1

A(𝑇, ˆ𝒍, �̂� (B)
1
) → �̂�

(C)
2

makePayment(𝑇,�̂� (C)
2
) → �̂�

(B)
2

A(�̂� (B)
1

, �̂�
(B)
2

,𝑇 , 𝑝𝑘) → (𝑧, ¥̂𝜋)
∀𝑗, 𝑗 ∈ [𝑛] :(

verComplaint(𝑧, ¥̂𝜋,𝑔, �̂�, ˆ𝒍, 𝑗, 𝑠𝑘D, 𝑎𝑢𝑥, 𝑝𝑝) → �̂� 𝑗

)
resDispute(𝑇

2
, �̂�, 𝑝𝑝) → 𝒗 = [𝑣

1
, ..., 𝑣

4
]

it holds that the following probability is negligible (i.e., ` (_)):

Pr

(
(𝑚 (B)

1
= 𝑤𝑎𝑟𝑛𝑖𝑛𝑔) ∧ (

𝑛∑︁
𝑗=1

𝑤1, 𝑗 ≥ 𝑒)︸ ︷︷ ︸
(i)

)
∨

(
(

𝑛∑︁
𝑗=1

𝑤1, 𝑗 < 𝑒) ∧ (𝑣1 = 1)︸ ︷︷ ︸
(ii)

)
∨

(
(checkWarning(𝑚 (B)

1
) = 1) ∧ (

𝑛∑︁
𝑗=1

𝑤2, 𝑗 ≥ 𝑒)︸ ︷︷ ︸
(iii)

)
∨

(
(

𝑛∑︁
𝑗=1

𝑤2, 𝑗 < 𝑒) ∧ (𝑣2 = 1)︸ ︷︷ ︸
(iv)

)
∨

(
𝑢 ∉ 𝑄 ∧ Sig.ver(𝑝𝑘,𝑢, 𝑠𝑖𝑔) = 1︸ ︷︷ ︸

(v)

)
∨

(
(

𝑛∑︁
𝑗=1

𝑤3, 𝑗 < 𝑒) ∧ (𝑣3 = 1)︸ ︷︷ ︸
(vi)

)

: ExpA
1
(input)

where �̂� 𝑗 = [�̂�1, 𝑗 , �̂�2, 𝑗 , �̂�3, 𝑗 , �̂�4, 𝑗], �̂� = [�̂�

1
, ..., �̂�𝑛], �̂� = [�̂� (C)

1
, �̂�

(C)
2

,

�̂�
(B)
1

, �̂�
(B)
2
], (𝑤

1, 𝑗 , ...,𝑤3, 𝑗) are the decoding of (�̂�
1, 𝑗 , ..., �̂�3, 𝑗) ∈ �̂� 𝑗 ∈

�̂� , and input := (1_, 𝑎𝑢𝑥).
Security against a malicious bank requires that a malicious bank

cannot disqualify an honest victim from being reimbursed. Specifi-

cally, a corrupt bank cannot (i) make DR conclude that the “pass”

message was correctly given or an important warning was not

missing although at least the threshold of D𝑗 s do not believe so, or

(ii) convince DR that the warning message was effective although

at least the threshold of D𝑗 s do not believe so, or (iii) make DR
believe that less than the threshold ofD𝑗 s did not accept the certifi-

cate although at least the threshold of them did it, or (iv) makeDR
believe that no payment was made, although at least the threshold

of D𝑗 s believe the opposite.

Definition 4 (Security against a malicious bank). A pwdr scheme

is secure against a malicious bank, if for any _, 𝑎𝑢𝑥 , and PPT ad-

versary A, there exists a negligible function ` (·), such that for an

experiment ExpA
2
:

859

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Aydin Abadi and Steven J. Murdoch

keyGen(1_) → (𝑠𝑘, 𝑝𝑘)
A(1_) → (𝑇, 𝑝𝑝, 𝒍, 𝑓 , 𝑖𝑛𝑓 , 𝑎𝑢𝑥 𝑓)
customerInit(1_,𝑇 , 𝑝𝑝) → 𝑎

genUpdateRequest(𝑇, 𝑓 , 𝒍) → �̂�
(C)
1

insertNewPayee(�̂� (C)
1

, 𝒍) → ˆ𝒍
A(𝑇, ˆ𝒍, 𝑎𝑢𝑥) → �̂�

(B)
1

genPaymentRequest(𝑇, 𝑖𝑛𝑓 , ˆ𝒍, �̂�
(B)
1
) → �̂�

(C)
2

A(𝑇,�̂� (C)
2
) → �̂�

(B)
2

genComplaint(�̂� (B)
1

, �̂�
(B)
2

,𝑇 , 𝑝𝑘, 𝑎𝑢𝑥 𝑓) → (𝑧, ¥̂𝜋)
∀𝑗, 𝑗 ∈ [𝑛] :(

verComplaint(𝑧, ¥̂𝜋,𝑔, �̂�, ˆ𝒍, 𝑗, 𝑠𝑘D, 𝑎𝑢𝑥, 𝑝𝑝) → �̂� 𝑗

)
resDispute(𝑇

2
, �̂�, 𝑝𝑝) → 𝒗 = [𝑣

1
, ..., 𝑣

4
]

it holds that the following probability is ` (_):

Pr

(
(

𝑛∑︁
𝑗=1

𝑤1, 𝑗 ≥ 𝑒) ∧ (𝑣1 = 0)︸ ︷︷ ︸
(i)

)
∨

(
(

𝑛∑︁
𝑗=1

𝑤2, 𝑗 ≥ 𝑒) ∧ (𝑣2 = 0)︸ ︷︷ ︸
(ii)

)
∨

(
(

𝑛∑︁
𝑗=1

𝑤3, 𝑗 ≥ 𝑒) ∧ (𝑣3 = 0)︸ ︷︷ ︸
(iii)

)
∨

(
(

𝑛∑︁
𝑗=1

𝑤4, 𝑗 ≥ 𝑒) ∧ (𝑣4 = 0)︸ ︷︷ ︸
(iv)

)
: ExpA

2
(input)

A pwdr scheme is privacy-preserving if it protects the privacy

of (1) customers, bank, and auditors’ sensitive messages from the

scheme’s non-participants and (2) each auditor’s verdict from DR.

Definition 5 (Privacy). A pwdr scheme preserves privacy if the

following two properties are satisfied.

(1) For any PPT adversary A
1
, security parameter _, and auxiliary

information 𝑎𝑢𝑥 , there exists a negligible function ` (·), such
that for any experiment ExpA1

3
:

keyGen(1_) → (𝑠𝑘, 𝑝𝑘)
bankInit(1_) → (𝑇, 𝑝𝑝, 𝒍)
customerInit(1_,𝑇 , 𝑝𝑝) → 𝑎

A
1
(1_, 𝑝𝑘, 𝑎, 𝑝𝑝, 𝑔, 𝒍) →

(
(𝑓

0
, 𝑓

1
), (𝑖𝑛𝑓

0

, 𝑖𝑛𝑓
1

),

(𝑎𝑢𝑥 𝑓
0
, 𝑎𝑢𝑥 𝑓

1
)
)

𝛾
$← {0, 1}

genUpdateRequest(𝑇, 𝑓𝛾 , 𝒍) → �̂�
(C)
1

insertNewPayee(�̂� (C)
1

, 𝒍) → ˆ𝒍
genWarning(𝑇, ˆ𝒍, 𝑎𝑢𝑥) → �̂�

(B)
1

genPaymentRequest(𝑇, 𝑖𝑛𝑓𝛾
, ˆ𝒍, �̂� (B)

1
) → �̂�

(C)
2

makePayment(𝑇,�̂� (C)
2
) → �̂�

(B)
2

genComplaint(�̂� (B)
1

, �̂�
(B)
2

,𝑇 , 𝑝𝑘, 𝑎𝑢𝑥 𝑓𝛾
) → (𝑧, ¥̂𝜋)

∀𝑗, 𝑗 ∈ [𝑛] :(
verComplaint(𝑧, ¥̂𝜋,𝑔, �̂�, ˆ𝒍, 𝑗, 𝑠𝑘D, 𝑎𝑢𝑥, 𝑝𝑝) → �̂� 𝑗

)
resDispute(𝑇

2
, �̂�, 𝑝𝑝) → 𝒗

it holds that:

Pr

[
A1 (𝑔, �̂�, ˆ𝒍, 𝑧, ¥̂𝜋, �̂�) → 𝛾 : ExpA1

3
(input)

]
≤ 1

2

+ ` (_)

(2) For any PPT adversaries A
2
and A

3
, security parameter _, and

auxiliary information 𝑎𝑢𝑥 , there exists a negligible function

` (·), such that for any experiment ExpA2

4
:

keyGen(1_) → (𝑠𝑘, 𝑝𝑘)
bankInit(1_) → (𝑇, 𝑝𝑝, 𝒍)
customerInit(1_,𝑇 , 𝑝𝑝) → 𝑎

A
2
(1_, 𝑝𝑘, 𝑎, 𝑝𝑝, 𝒍) → (𝑓 , 𝑖𝑛𝑓 , 𝑎𝑢𝑥 𝑓)

genUpdateRequest(𝑇, 𝑓 , 𝒍) → �̂�
(C)
1

insertNewPayee(�̂� (C)
1

, 𝒍) → ˆ𝒍
A

2
(𝑇, ˆ𝒍, 𝑎𝑢𝑥) →𝑚

(B)
1

Encode(𝑇
1
,𝑚
(B)
1
) → �̂�

(B)
1

genPaymentRequest(𝑇, 𝑖𝑛𝑓 , ˆ𝒍, �̂�
(B)
1
) → �̂�

(C)
2

A
2
(𝑇, 𝑝𝑘, 𝑎𝑢𝑥 𝑓 , �̂�

(B)
1

, �̂�
(C)
2
) → (𝑚 (B)

2
, 𝑧, ¥𝜋)

Encode(𝑇
1
,𝑚
(B)
2
) → �̂�

(B)
2

Encode(𝑇
1
, 𝑧) → 𝑧

¯Encode(𝑝𝑘D, ¥𝜋) → ¥̂𝜋
∀𝑗, 𝑗 ∈ [𝑛] :(

verComplaint(𝑧, ¥̂𝜋,𝑔, �̂�, ˆ𝒍, 𝑗, 𝑠𝑘D, 𝑎𝑢𝑥, 𝑝𝑝) → �̂� 𝑗

)
resDispute(𝑇

2
, �̂�, 𝑝𝑝) → 𝒗

it holds that:

Pr

[
A3 (𝑇2, 𝑝𝑘, 𝑝𝑝,𝑔, �̂�, ˆ𝒍, 𝑧, ¥̂𝜋,
�̂�, 𝒗) → 𝑤𝑗

:ExpA2

4
(input)

]
≤𝑃𝑟 ′ + ` (_)

Let D𝑖 output 0 and 1 with probabilities 𝑃𝑟𝑖,0 and 𝑃𝑟𝑖,1 respec-

tively. Then, 𝑃𝑟 ′ is defined as𝑀𝑎𝑥 (𝑃𝑟
1,0, 𝑃𝑟1,1, ..., 𝑃𝑟𝑛,0, 𝑃𝑟𝑛,1).

Definition 6 (Security). A pwdr scheme is secure if it meets security

against a malicious victim, security against a malicious bank, and

preserves privacy with respect to definitions 3, 4, and 5 respectively.

We refer readers to Appendix A and the paper’s full version [3]

for further discussion about the above definitions.

7 PAYMENTWITH DISPUTE RESOLUTION
PROTOCOL

In this section, we first present an outline of the PwDR (in Section

7.1). Then, we present a few subroutines (in Sections 7.2–7.4) that

will be used in this protocol. After that, we describe the PwDR in

detail (in Section 7.5).

7.1 An Overview of the Protocol
At a high level, the PwDR works as follows. Initially, C and B
agree on a smart contract S. They also use the SAP to agree on

two private statements including two secret keys that will be used

to encrypt outgoing messages. When C wants to transfer money

to a new payee, it signs into its online banking. It generates an

update request (that specifies the new payee’s detail), encrypts

it, and sends the result to S. Then, B decrypts and checks the

request, e.g., whether it meets its internal policy. Depending on the

request, B generates a pass or warning message. It encrypts the

message and sends the result to S. Next, C checks B’s message

860

Payment with Dispute Resolution:
A Protocol for Reimbursing Frauds Victims ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

and decides whether to make payment. If it decides to do so, it

sends an encrypted payment detail to S. After that, B decrypts the

message and locally transfers the amount of money specified in

C’s message. Once the money is transferred, B sends an encrypted

“paid” message to S.
Once C realises that it has fallen victim, it raises a dispute. Specif-

ically, it generates an encrypted complaint that can challenge the

effectiveness of the warning and/or any payment inconsistency. It

can include in the complaint an evidence/certificate, e.g., asserting

that it falls into the vulnerable customer category as defined in the

CRM code. C encrypts the complaint and sends to S the result and

a proof asserting the secret key’s correctness. Then, each auditor

verifies the proof. If the verification passes, it decrypts and compiles

C’s complaint to generate a (set of) verdict. Each auditor encodes

its verdict and sends the encoded verdict’s encryption to S. To
resolve a dispute between C and B, either of them invokesDR. To
do so, it directly sends to DR one of the above secret keys and a

proof asserting that the key was generated correctly. DR verifies

the proof. If approved, it locally decrypts the encrypted encoded

verdicts (retrieved from S) and finds out the final verdict. If the

final verdict indicates the legitimacy of C’s complaint, then C must

be reimbursed. Note, the verdicts are encoded in a way that even

after decrypting them, DR cannot link a verdict to a committee

member or even figure out how many 1 or 0 verdicts were provided

(except when all verdicts are 0). However, it can find out whether

at least the threshold of the auditors voted in favour of C.

7.2 A Subroutine for Determining Bank’s
Message Status

In the payment journey, the customer may receive a “pass” message

or even nothing at all, e.g., due to a system failure. In such cases, a

victim must be able to complain that if the pass or missing message

was a warning, then it would have prevented it from falling victim.

To assist the auditors to deal with such complaints deterministically,

we propose verStat(.) algorithm, which is run locally by each

committee member. This algorithm is presented in Figure 1.

verStat(𝑎𝑑𝑑S,𝑚 (B) , 𝒍,Δ, 𝑎𝑢𝑥) → 𝑤
1

• Input. 𝑎𝑑𝑑S : the address of smart contract S, 𝑚 (B) :
B’s warning message, 𝒍 : customer’s payees’ list, Δ: a
time parameter, and 𝑎𝑢𝑥 : auxiliary information, e.g.,

bank’s policy.

• Output.𝑤
1
= 0: if the “pass” message had been given

correctly or the missing message did not play any

role in preventing the fraud;𝑤
1
= 1: otherwise.

(1) reads the content of S. It checks if𝑚 (B) =“pass” or
the encrypted warning message was not sent on

time (i.e., never sent or sent after 𝑡
0
+ Δ). If one of

the checks passes, it proceeds; Otherwise, it aborts.

(2) checks the validity of customer’s most recent payees’

list 𝒍 , with the help of 𝑎𝑢𝑥 .

• if 𝒍 contains an invalid element, it sets𝑤
1
= 1.

• otherwise, it sets𝑤
1
= 0.

(3) returns𝑤
1
.

Figure 1: Algorithm to Determine a Bank’s Message Status.

7.3 A Subroutine for Checking a Warning’s
Effectiveness

To help the auditors deterministically compile a victim’s complaint

about a warning’s effectiveness, we propose an algorithm, called

checkWarning(.) which is run locally by each auditor. It also allows
the victims to provide (to the auditors) a certificate/evidence as part

of their complaints. This algorithm is presented in Figure 2.

checkWarning(𝑎𝑑𝑑S, 𝑧,𝑚 (B) , 𝑎𝑢𝑥 ′) → (𝑤2
,𝑤

3
)

• Input. 𝑎𝑑𝑑S : the address of smart contract S, 𝑧: C’s com-

plaint,𝑚 (B) : B’s warning message, and 𝑎𝑢𝑥 ′: auxiliary in-

formation, e.g., guideline on warnings’ effectiveness.

• Output.𝑤
2
= 0: if the given warning message is effective;

𝑤
2
= 1: if the warning message is ineffective. Also,𝑤

3
= 1:

if the certificate in 𝑧 is valid or no certificate is provided;

𝑤
3
= 0: if the certificate is invalid.

(1) parse 𝑧 =𝑚 | |𝑠𝑖𝑔| |𝑝𝑘 | |“challenge warning”. If 𝑠𝑖𝑔 is empty,

it sets𝑤
3
= 0 and goes to step 2. Otherwise, it:

(a) verifies the certificate: Sig.ver(𝑝𝑘,𝑚, 𝑠𝑖𝑔) → ℎ.

(b) if the certificate is rejected (i.e., ℎ = 0), it sets𝑤
3
= 0. It

goes to step 4.

(c) otherwise (i.e., ℎ = 1), it sets𝑤
3
= 1 and moves onto the

next step.

(2) checks if “warning” ∈𝑚 (B) . If the check is passed, it pro-

ceeds to the next step. Otherwise, it aborts.

(3) checks the warning’s effectiveness, with the assistance of

the evidence𝑚 and auxiliary information 𝑎𝑢𝑥 ′.
• if it is effective, it sets𝑤

2
= 0. Otherwise, it sets𝑤

2
= 1.

(4) returns (𝑤
2
,𝑤

3
).

Figure 2: Algorithm to Check Warning’s Effectiveness.

7.4 Subroutines for Encoding-Decoding Verdicts
Now, we present verdict encoding and decoding protocols. They let

a third party I, e.g., DR, learn if a threshold of the auditors voted

1, while satisfying the following requirements. The protocols (1)

generate unlinkable verdicts, (2) do not require auditors to interact

with each other for each customer, and (3) are efficient. Since the

second and third requirements are self-explanatory, we only explain

the first one. Informally, the first property states that the protocols

generate encoded verdicts and final verdict in a way that I, given
these values, cannot (a) link a verdict to an auditor (except when all

verdicts are 0), and (b) learn the total number of 1 or 0 verdicts when

they provide different verdicts. Shortly, we present two variants of

verdict encoding and decoding protocol. The first variant is highly

efficient and suitable when the threshold is 1. The second one is

generic and works for any threshold (but is less efficient).

7.4.1 Variant 1: Efficient Verdict Encoding-Decoding Protocol. This
variant has two protocols, Private Verdict Encoding (PVE) and Final

Verdict Decoding (FVD). They let I learn if at least one auditor

voted 1. This variant relies on our observation that if a set of random

values and 0s are XORed, then the result reveals nothing, e.g., about

the number of non-zero and zero values. In Appendix B, we present

the above observation’s formal statement and its proof. At a high

level, PVE and FVD work as follows. The auditors only once agree

on a secret key (to do that one of them picks a random key and

861

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Aydin Abadi and Steven J. Murdoch

sends it to the rest). This key will let each of them, in PVE, generate

a pseudorandom masking value such that if all masking values are

XORed, they would cancel out each other.
1
In PVE, each auditor

encodes its verdict by (i) representing it as a parameter which is set

to 0 if the verdict is 0, or to a random value if the verdict is 1, and

then (ii) “masking” this parameter with the above pseudorandom

value. It sends the result to I. In FVD, I XORs all encoded verdicts.

This removes the masks and XORs all verdicts’ representations. If

the result is 0, it concludes that all auditors voted 0; so, the final

verdict is 0. But, if the result is not 0, it knows that at least one of

the auditors voted 1, so the final verdict is 1. Figures 3 and 4 present

PVE and FVD respectively.

7.4.2 Variant 2: Generic Verdict Encoding-Decoding Protocol. This
variant also includes two protocols, Generic Private Verdict Encod-

ing (GPVE) and Generic Final Verdict Decoding (GFVD) which let

I learn if at least 𝑒 auditors voted 1, where 𝑒 is an integer in [1, 𝑛].
It uses a novel combination of Bloom filter and combinatorics.

It relies on our observation that a Bloom filter encoding a set of

random values reveals nothing about the set’s elements. Appendix

D presents the above observation’s formal statement and proof.

In this variant also, the auditors initially agree on a secret key

used to generate a pseudorandom masking value. Each auditor D𝑗

represents its verdict by a parameter, such that if its verdict is 0, it

sets the parameter to 0; but, if the verdict is 1, it sets the parameter

to a fresh pseudorandom value 𝛼 𝑗 , also derived from the above key.

Thus, there would be a set 𝐴 = {𝛼
1
, ..., 𝛼𝑛} from which D𝑗 would

pick 𝛼 𝑗 to represent its verdict 1.

Each D𝑗 masks its verdict representation by its masking value.

It sends the result to I. Also, (only) auditor D𝑛 generates a set

𝑊 of all combinations of auditors’ verdict 1’s representations that

satisfy the threshold, 𝑒 . Specifically, for every integer 𝑖 in [𝑒, 𝑛],
it computes the combinations (without repetition) of 𝑖 elements

from 𝐴 = {𝛼
1
, ..., 𝛼𝑛}. If multiple elements are taken at a time (i.e.,

𝑖 > 1), they are XORed with each other. Let 𝑊 = {(𝛼
1
⊕ ... ⊕

𝛼𝑒), (𝛼2
⊕ ... ⊕ 𝛼𝑒+1), ..., (𝛼1

⊕ ... ⊕ 𝛼𝑛)} be the result. D𝑛 computes

each element of𝑊 regardless of what a specific auditor votes; also,

it can generate each 𝛼𝑖 independently, as it knows the single key

(of the pseudorandom function) that was used by other auditors to

generate these values. To protect the votes representations’ privacy

(from I), it inserts all elements of𝑊 into a Bloom filter. Let BF be
the resulting Bloom filter. It sends BF to I.

In GFVD, to decode the final verdict, I XORs all masked verdict

representations which removes the masking values and XORs the

representations. Let 𝑐 be the result. If 𝑐 = 0, then I concludes that

all auditors voted 0; so, it sets the final verdict to 0. If 𝑐 ≠ 0, then it

checks if 𝑐 ∈ BF. If it is, then it concludes that at least the threshold

of the auditors voted 1, so it sets the final verdict to 1. Otherwise

(𝑐 ∉ BF), it learns that less than the threshold of the auditors voted

1; so, it sets the final verdict to 0. Figures 6 and 7, in the paper’s

full version [3], present the GPVE and GFVD protocols in detail.

Appendix C provides further discussion about the rationale behind

the protocols’ design.

Note, the total number of the combinations, i.e.,𝑊 ’s cardinality,

is small when the number of auditors is not high. In general, due

to the binomial theorem,𝑊 ’s cardinality is determined as: |𝑊 | =

1
It is similar to the idea used in the XOR-based secret sharing [30].

𝑛∑
𝑖=𝑒

𝑛!

𝑖!(𝑛−𝑖)! . For instance, when 𝑛 = 10 and 𝑒 = 6, then |𝑊 | = 386.

Appendix E provides more discussions on the above protocols and

their difference from existing voting protocols.

PVE(¯𝑘
0
, ID,𝑤 𝑗 , 𝑜, 𝑛, 𝑗) → �̄� 𝑗

• Input. ¯𝑘
0
: a key of pseudorandom function PRF(.), ID: a unique

identifier, 𝑤 𝑗 : a verdict, 𝑜 : a counter, 𝑛: the total number of

auditors, and 𝑗 : an auditor’s index.

• Output. �̄� 𝑗 : an encoded verdict.

Auditor D𝑗 takes the following steps.

(1) computes a pseudorandom value, as follows.

• if 𝑗 < 𝑛 : 𝑟 𝑗 = PRF(¯𝑘
0
, 𝑜 | | 𝑗 | |ID).

• if 𝑗 = 𝑛 : 𝑟 𝑗 =
𝑛−1⊕
𝑖=1

𝑟𝑖 .

(2) sets a fresh parameter,𝑤 ′𝑗 , as below.

𝑤 ′𝑗 =

{
0, if𝑤 𝑗 = 0

𝛼 𝑗

$← F𝑝 , if𝑤 𝑗 = 1

(3) encodes𝑤 ′𝑗 as follows. �̄� 𝑗 = 𝑤 ′𝑗 ⊕ 𝑟 𝑗 .
(4) outputs �̄� 𝑗 .

Figure 3: Private Verdict Encoding (PVE) Protocol. In the
figure, D𝑛 can generate other auditors’ 𝑟𝑖 values, given ¯𝑘

0
.

Note, ID is a unique identifier (e.g., wallet address) of the
party for whom a verdict is provided (e.g., a client), and 𝑜

is a counter that determines how many times a verdict for
the same ID holder has been generated in the past. ID and
𝑜 are used to ensure that each 𝑟 𝑗 will be different for each
invocation of PVE although the same key ¯𝑘

0
is used.

FVD(𝑛, �̄�) → 𝑣

• Input. 𝑛: the total number of auditors, and �̄� = [�̄�
1
, ..., �̄�𝑛]: a

vector of all auditors’ encoded verdicts.

• Output. 𝑣 : final verdict.
A third-party I takes the following steps.

(1) combines all auditors’ encoded verdicts, �̄� 𝑗 ∈ �̄� , as follows.
𝑐 =

𝑛⊕
𝑗=1

�̄� 𝑗

(2) sets the final verdict 𝑣 depending on the content of 𝑐 . Specif-

ically,

𝑣 =

{
0, if 𝑐 = 0

1, otherwise

(3) outputs 𝑣 .

Figure 4: Final Verdict Decoding (FVD) Protocol.

7.5 The PwDR
In this section, we present the PwDR in detail.

(1) Generating G’s and D𝑗 ’s Parameters: keyGen(1_) → (𝑠𝑘, 𝑝𝑘).
Parties G and (only) D𝑗 take steps 1a and 1b respectively.

(a) calls Sig.keyGen(1_) → (𝑠𝑘G, 𝑝𝑘G) to generate secret key

𝑠𝑘G and public key 𝑝𝑘G . It publishes 𝑝𝑘G .

(b) calls
˜keyGen(1_) → (˜𝑠𝑘D, ˜𝑝𝑘D) to generate decrypting secret

key
˜𝑠𝑘D and encrypting public key

˜𝑝𝑘D . It also generates a

key
¯𝑘

0
for PRF, i.e., ¯𝑘

0

$← {0, 1}Λ. It sets 𝑝𝑘D = ˜𝑝𝑘D and

𝑠𝑘D := (˜𝑠𝑘D, ¯𝑘
0
). It publishes 𝑝𝑘D and sends 𝑠𝑘D to the rest

of the auditors.

862

Payment with Dispute Resolution:
A Protocol for Reimbursing Frauds Victims ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

Let 𝑠𝑘 := (𝑠𝑘G, 𝑠𝑘D) and 𝑝𝑘 := (𝑝𝑘G, 𝑝𝑘D). Note, this phase
occurs only once for all customers.

(2) Bank-side Initiation: bankInit(1_) → (𝑇, 𝑝𝑝, 𝒍).
Bank B takes the following steps.

(a) picks secret keys
¯𝑘

1
and

¯𝑘
2
for a symmetric key encryption

scheme secure against a Chosen-Plaintext Attack (CPA). It

sets two private statements as 𝜋
1
= ¯𝑘

1
and 𝜋

2
= ¯𝑘

2
.

(b) calls SAP.init(1_, 𝑎𝑑𝑟B, 𝑎𝑑𝑟C, 𝜋𝑖) → (𝑟𝑖 , 𝑔𝑖 , 𝑎𝑑𝑟SAP) to initiate

agreements on statements 𝜋𝑖 ∈ {𝜋1
, 𝜋

2
} with C. Let 𝑇𝑖 :=

(¥𝜋𝑖 , 𝑔𝑖) and𝑇 := (𝑇
1
,𝑇

2
), where ¥𝜋𝑖 := (𝜋𝑖 , 𝑟𝑖) is the opening of

𝑔𝑖 . It also sets parameter Δ as a time window between two

specific time points, i.e., Δ = 𝑡𝑖 − 𝑡𝑖−1
. Briefly, it is used to

impose an upper bound on a message delay.

(c) sends ¥𝜋 := (¥𝜋
1
, ¥𝜋

2
) to C and sends public parameter 𝑝𝑝 :=

(𝑎𝑑𝑟
SAP

,Δ) to smart contract S.
(3) Customer-side Initiation: customerInit(1_,𝑇 , 𝑝𝑝) → 𝑎.

Customer C takes the following steps.

(a) calls SAP.agree(𝜋𝑖 , 𝑟𝑖 , 𝑔𝑖 , 𝑎𝑑𝑟B, 𝑎𝑑𝑟SAP) → (𝑔′𝑖 , 𝑏𝑖), to locally

check the correctness of parameters in𝑇𝑖 ∈ 𝑇 and (if accepted)

to agree on these parameters, where (𝜋𝑖 , 𝑟𝑖) ∈ ¥𝜋𝑖 ∈ 𝑇𝑖 and
1 ≤ 𝑖 ≤ 2. Note, if both B and C are honest, then 𝑔𝑖 = 𝑔′𝑖 . It
also checks Δ in S, e.g., to see if it is sufficiently large.

(b) if the above checks fail, it sets 𝑎 = 0 and aborts. Otherwise, it

sets 𝑎 = 1. It sends 𝑎 to S.
(4) Generating Update Request: genUpdateRequest(𝑇, 𝑓 , 𝒍) → �̂�

(C)
1

.

Customer C takes the following steps.

(a) sets its request parameter𝑚
(C)
1

as below.

• if it wants to set up a new payee, then it sets𝑚
(C)
1

:= (𝜙, 𝑓),
where 𝑓 is the new payee’s detail.

• if it wants to amend the existing payee’s detail, it sets

𝑚
(C)
1

:= (𝑖, 𝑓), where 𝑖 is an index of the element in 𝒍 that
should change to 𝑓 .

(b) at time 𝑡
0
, sends to S the encryption of 𝑚

(C)
1

, i.e., �̂�
(C)
1

=

Enc(¯𝑘
1
,𝑚
(C)
1
).

(5) Inserting New Payee: insertNewPayee(�̂� (C)
1

, 𝒍) → ˆ𝒍 .

Smart contract S takes the following steps.

• if �̂�
(C)
1

is not empty, it appends �̂�
(C)
1

to the payee list
ˆ𝒍 , result-

ing in an updated list,
ˆ𝒍 .

• if �̂�
(C)
1

is empty, it does nothing.

(6) Generating Warning: genWarning(𝑇, ˆ𝒍, 𝑎𝑢𝑥) → �̂�
(B)
1

.

Bank B takes the following steps.

(a) checks if the most recent list
ˆ𝒍 is not empty. If it is empty, it

halts. Else, it proceeds to the next step.

(b) decrypts each element of
ˆ𝒍 and checks its correctness, e.g.,

checks whether each element meets its internal policy stated

in 𝑎𝑢𝑥 . If the check passes, it sets 𝑚
(B)
1

= “pass”. Other-

wise, it sets𝑚
(B)
1

= warning, where the warning is a string

that contains a warning’s detail concatenated with the string

“warning”.

(c) at time 𝑡
1
, sends to S the encryption of 𝑚

(B)
1

, i.e., �̂�
(B)
1

=

Enc(¯𝑘
1
,𝑚
(B)
1
).

(7) Generating Payment Request: genPaymentRequest(𝑇, 𝑖𝑛𝑓 , ˆ𝒍, �̂�
(B)
1
)

→ �̂�
(C)
2

.

Customer C takes the following steps.

(a) at time 𝑡
2
, decrypts

ˆ𝒍 and �̂� (B)
1

. Depending on the warning, it

sets a payment request𝑚
(C)
2

to 𝜙 or 𝑖𝑛𝑓 , where 𝑖𝑛𝑓 contains

the payment’s detail, e.g., the payee’s detail in
ˆ𝒍 and amount

it wants to send.

(b) at time 𝑡
3
, sends to S the encryption of 𝑚

(C)
2

, i.e., �̂�
(C)
2

=

Enc(¯𝑘
1
,𝑚
(C)
2
).

(8) Making Payment: makePayment(𝑇,�̂� (C)
2
) → �̂�

(B)
2

.

Bank B takes the following steps.

(a) at time 𝑡
4
, decrypts �̂�

(C)
2

, i.e.,𝑚
(C)
2

= Dec(¯𝑘
1
, �̂�
(C)
2
).

(b) at time 𝑡
5
, checks the content of𝑚

(C)
2

. If𝑚
(C)
2

is non-empty,

i.e., 𝑚
(C)
2

= 𝑖𝑛𝑓 , it checks if the payee’s detail in 𝑖𝑛𝑓 has

already been checked and the payment’s amount does not

exceed the customer’s credit. If the checks pass, it runs the

off-chain payment algorithm, pay(𝑖𝑛𝑓). In this case, it sets

𝑚
(B)
2

=“paid”. Otherwise (i.e., if 𝑚
(C)
2

= 𝜙 or neither checks

pass), it sets𝑚
(B)
2

= 𝜙 . It sends to S the encryption of𝑚
(B)
2

,

i.e., �̂�
(B)
2

= Enc(¯𝑘
1
,𝑚
(B)
2
).

(9) Generating Complaint: genComplaint(�̂� (B)
1

, �̂�
(B)
2

,𝑇 , 𝑝𝑘, 𝑎𝑢𝑥 𝑓) →
(𝑧, ¥̂𝜋).
Customer C takes the following steps.

(a) decrypts �̂�
(B)
1

and �̂�
(B)
2

; this results in𝑚
(B)
1

and𝑚
(B)
2

respec-

tively. Depending on the content of the decrypted values, it

sets its complaint’s parameters 𝑧 := (𝑧
1
, 𝑧

2
, 𝑧

3
) as follows.

• if C wants to make one of the two below statements, it sets

𝑧
1
=“challenge message”.

(i) the pass message (in𝑚
(B)
1

) should have been a warning.

(ii) B did not provide any message and ifB provided a warn-

ing, the fraud would have been prevented.

• if C wants to challenge the effectiveness of the warning

(in 𝑚
(B)
1

), it sets 𝑧
2
= 𝑚 | |𝑠𝑖𝑔| |𝑝𝑘G | | “challenge warning”,

where𝑚 is a piece of evidence, 𝑠𝑖𝑔 ∈ 𝑎𝑢𝑥 𝑓 is the evidence’s

certificate (obtained from G), and 𝑝𝑘G ∈ 𝑝𝑘 .
• if C wants to complain about the payment’s inconsistency,

it sets 𝑧
3
= “challenge payment”; else, it sets 𝑧

3
= 𝜙 .

(b) at time 𝑡
6
, sends 𝑧 = Enc(¯𝑘

1
, 𝑧) and ¥̂𝜋 = ˜Enc(𝑝𝑘D, ¥𝜋) to S.

(10) Verifying Complaint: verComplaint(𝑧, ¥̂𝜋,𝑔, �̂�, ˆ𝒍, 𝑗, 𝑠𝑘D, 𝑎𝑢𝑥, 𝑝𝑝)
→ �̂� 𝑗 .

Every D𝑗 ∈ {D1
, ...,D𝑛} acts as follows.

(a) at time 𝑡
7
, decrypts ¥̂𝜋 , i.e., ¥𝜋 = ˜Dec(˜𝑠𝑘D, ¥̂𝜋), where ˜𝑠𝑘D ∈ 𝑠𝑘D .

(b) checks the validity of (¥𝜋
1
, ¥𝜋

2
) in ¥𝜋 by locally running the

SAP’s verification, i.e., SAP.verify(.), for each ¥𝜋𝑖 . It returns

𝑠 . If 𝑠 = 0, it halts. If 𝑠 = 1 for both ¥𝜋
1
and ¥𝜋

2
, it proceeds to

the next step.

(c) decrypts �̂� = [�̂� (C)
1

, �̂�
(C)
2

, �̂�
(B)
1

, �̂�
(B)
2
], using Dec(¯𝑘

1
, .), where

¯𝑘
1
∈ ¥𝜋

1
. Let [𝑚 (C)

1
,𝑚
(C)
2

,𝑚
(B)
1

,𝑚
(B)
2
] be the result.

(d) checks whether C made an update request to its payee’s list.

To do so, it checks if𝑚
(C)
1

is non-empty and (its encryption)

was registered by C in S. Also, it checks whether C made

a payment request, by checking if 𝑚
(C)
2

is non-empty and

(its encryption) was registered by C in S at time 𝑡
3
. If either

check fails, it halts.

(e) decrypts 𝑧 and
ˆ𝒍 using Dec(¯𝑘

1
, .), where ¯𝑘

1
∈ ¥𝜋

1
. Let 𝑧 :=

(𝑧
1
, 𝑧

2
, 𝑧

3
) and 𝒍 be the result.

(f) sets its verdicts according to 𝑧 := (𝑧
1
, 𝑧

2
, 𝑧

3
) as follows.

863

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Aydin Abadi and Steven J. Murdoch

• if “challenge message” ∉ 𝑧
1
, it sets 𝑤

1, 𝑗 = 0. Otherwise, it

runs verStat(𝑎𝑑𝑑S,𝑚 (B)1
, 𝒍,Δ, 𝑎𝑢𝑥) → 𝑤

1, 𝑗 , to determine

if a warning (in𝑚
(B)
1

) should have been given (instead of

the pass or no message).

• if “challenge warning” ∉ 𝑧
2
, it sets 𝑤

2, 𝑗 = 𝑤
3, 𝑗 = 0. Other-

wise, it runs checkWarning(𝑎𝑑𝑑S, 𝑧2
,𝑚
(B)
1

, 𝑎𝑢𝑥 ′) → (𝑤
2, 𝑗 ,𝑤3, 𝑗),

to determine the effectiveness of the warning (in𝑚
(B)
1

).

• if “challenge payment” ∈ 𝑧
3
, it checks if the payment was

made. If it passes, it sets𝑤
4, 𝑗 = 1. If it failes, it sets𝑤

4, 𝑗 = 0.

If “challenge payment” ∉ 𝑧
3
, it checks if “paid” ∈𝑚 (B)

2
. If it

passes, it sets𝑤
4, 𝑗 = 1. Else, it sets𝑤

4, 𝑗 = 0.

(g) encodes its verdicts (𝑤
1, 𝑗 ,𝑤2, 𝑗 ,𝑤3, 𝑗 ,𝑤4, 𝑗):

(i) maintains a counter, 𝑜𝑎𝑑𝑟𝑐 , for each C. It sets its initial value
to 0. It skips this step, if the counter has already been set.

(ii) calls PVE(.) to encode each verdict. In particular, it performs

as follows. ∀𝑖, 1 ≤ 𝑖 ≤ 4 :

• calls PVE(¯𝑘
0
, 𝑎𝑑𝑟C,𝑤𝑖,𝑗 , 𝑜𝑎𝑑𝑟𝑐 , 𝑛, 𝑗) → �̄�𝑖,𝑗 .

• sets 𝑜𝑎𝑑𝑟𝑐 = 𝑜𝑎𝑑𝑟𝑐 + 1.

By the end of this step, a vector �̄� 𝑗 of four encoded verdicts

is computed, i.e., �̄� 𝑗 = [�̄�1, 𝑗 , ..., �̄�4, 𝑗].
(iii) uses

¯𝑘
2
∈ ¥𝜋

2
to further encode/encrypt PVE(.)’s outputs as

follows. �̂� 𝑗 = Enc(¯𝑘
2
, �̄� 𝑗).

(h) at time 𝑡
8
, sends to S the encrypted vector, �̂� 𝑗 .

(11) Resolving Dispute: resDispute(𝑇
2
, �̂�, 𝑝𝑝) → 𝒗.

Party DR takes the below steps at time 𝑡
9
, if it is invoked by C

or S which sends ¥𝜋
2
∈ 𝑇

2
to it.

(a) checks ¥𝜋
2
’s validity by locally running the SAP’s verification,

i.e., SAP.verify(.), that returns 𝑠 . If 𝑠 = 0, it halts.

(b) computes the final verdicts, as below.

(i) uses
¯𝑘

2
∈ ¥𝜋

2
to decrypt the auditors’ encoded verdicts, as

follows. ∀𝑗, 1 ≤ 𝑗 ≤ 𝑛 : �̄� 𝑗 = Dec(¯𝑘
2
, �̂� 𝑗), where �̂� 𝑗 ∈ �̂� .

(ii) constructs four vectors, [𝒖
1
, ..., 𝒖

4
], and sets each vector

𝒖𝑖 as follows. ∀𝑖, 1 ≤ 𝑖 ≤ 4 : 𝒖𝑖 = [�̄�𝑖,1, ..., �̄�𝑖,𝑛], where
�̄�𝑖,𝑗 ∈ �̄� 𝑗 .

(iii) calls FVD(.) to extract each final verdict, as follows. ∀𝑖, 1 ≤
𝑖 ≤ 4 : calls FVD(𝑛, 𝒖𝑖) → 𝑣𝑖 .

(c) outputs 𝒗 = [𝑣
1
, ..., 𝑣

4
].

Customer C must be reimbursed if the final verdict is that (i) the

“pass” message or missing message should have been a warning or

(ii) the warning was ineffective and the provided evidence was not

invalid, and (iii) the payment has been made. To state it formally,

the following relation must hold:

((𝑣
1
= 1)︸ ︷︷ ︸
(i)

∨ (𝑣
2
= 1 ∧ 𝑣

3
= 1)︸ ︷︷ ︸

(ii)

) ∧ (𝑣
4
= 1︸︷︷︸
(iii)

)

In the above protocol, even C and B that know the decryption

secret keys, (¯𝑘
1
, ¯𝑘

2
), cannot link a certain verdict to an auditor,

because: (a) they do not know the masking random values used by

auditors to mask each verdict and (b) the final verdicts (𝑣
1
, ..., 𝑣

4
)

reveal nothing about the number of 1 or 0 verdicts, except when all

auditors vote 0. In the PwDR, we used PVE and FVD only because

they are efficient. It is easy to replace them with GPVE and GFVD.

We highlight that our protocol does not require the bank to

commit any funds to the smart contract, which keeps it consistent

with the traditional banking setting. The final (legal) verdict would

suffice to enforce the bank to reimburse victims. Furthermore, in

the real world, during a payment journey, a customer may receive

various warning messages depending on the details it provides, its

transaction history, and the checks a bank conducts, e.g., “Confir-

mation of Payee” [11]. Thus, we have included warning messages

in our protocol to match the real-world banking setting. Appendix

F provides more discussion about the deployment of PwDR.

Below, we present the security theorem of the PwDR.

Theorem 1. The above PwDR is secure, with regard to Definition

6, if the digital signature is existentially unforgeable under chosen

message attacks, SAP, and the verdict encoding-decoding proto-

cols (i.e., PVE and FVD) are secure, the symmetric key encryption

and asymmetric key encryption are CPA-secure, the blockchain is

immutable, and the correctness of PVE and FVD holds.

Proof Outline. Below, we present an overview of the proof.

See Appendix G for detailed proof. PwDR is secure against a ma-

licious C because a malicious C cannot: (1) persuade an auditor

(and DR) to accept a different (d)encryption key other than what

was agreed between C and B in the initiation phase due to the

binding property of the SAP’s commitment, (2) come up with a

valid signature/certificate on a message that has never been queried

to the signing oracle due to the existential unforgeability of the

digital signature scheme, and (3) frame an honest B for providing

an invalid message, due to the immutability of the blockchain and

the existential unforgeability of the digital signature.

PwDR is secure against a malicious B because (1) malicious

B cannot persuade DR to accept a different decryption key due

to the SAP’s binding property, (2) the probability that multiple

representations of verdict 1 cancel out each other is negligible due to

the correctness of PVE-FVD, and (3)B cannot frame an honest C for

providing an invalid message due to the immutability of blockchain

and the existential unforgeability of the digital signature.

PwDR’s privacy holds due to (1) the security of the symmetric

and asymmetric key encryptions against CPA, (2) the SAP’s hiding

property, and (3) the privacy-preserving property of PVE-FVD. □

Note that since the smart contract in our PwDR merely acts as

an immutable bulletin board, one may replace it with any other

efficient tamper-evident logging mechanism, e.g., [12, 25, 31].

8 EVALUATION
In this section, we analyse the PwDR’s complexities, its concrete

runtime, and transaction latency. Tables 1 and 2 summarize the

asymptotic and performance analysis respectively.

8.1 Computation Complexity
8.1.1 Cost of Customer C. In Phase 3, C invokes a hash function

twice to check the correctness of the private statements’ parameters.

In Phase 4, it invokes the symmetric encryption once to encrypt

its update request. In Phase 7, it invokes the symmetric encryption

twice to decrypt B’s warning message and to encrypt its payment

request. In Phase 9, it runs the symmetric encryption three times

to decrypt B’s warning and payment messages and to encrypt its

complaint. In the same phase, it invokes asymmetric encryption

once to encrypt the private statements’ opening. Therefore, C’s
complexity is 𝑂 (1).
8.1.2 Cost of BankB. In Phase 2, it invokes the hash function twice
to commit to two statements. In Phase 6, it calls the symmetric key

encryption once to encrypt its outgoing warning message. In Phase

864

Payment with Dispute Resolution:
A Protocol for Reimbursing Frauds Victims ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

Table 1: The PwDR’s asymptotic cost. In the table, 𝑛 is the number of auditors and 𝑒 is the threshold.

Party
Setting

Computation Cost Communication Cost
𝑒 = 1 𝑒 > 1

Customer C ✓ ✓ 𝑂 (1) 𝑂 (1)
Bank B ✓ ✓ 𝑂 (1) 𝑂 (1)

Auditor D1, ...,D𝑛−1 ✓ ✓ 𝑂 (1) 𝑂 (1)
✓ 𝑂 (𝑛) 𝑂 (1)

Auditor D𝑛 ✓ 𝑂 (
𝑛∑
𝑖=𝑒

𝑛!

𝑖!(𝑛−𝑖) !) 𝑂 (
𝑛∑
𝑖=𝑒

𝑛!

𝑖!(𝑛−𝑖) !)

Dispute resolver DR ✓ ✓ 𝑂 (𝑛) 𝑂 (1)

Table 2: Parties’ run-time (in ms) in verdict encoding-decoding protocols. 𝑛: the number of auditors and 𝑒: the threshold.

Party
𝑛 = 6 𝑛 = 8 𝑛 = 10 𝑛 = 12

𝑒 = 1 𝑒 = 4 𝑒 = 1 𝑒 = 5 𝑒 = 1 𝑒 = 6 𝑒 = 1 𝑒 = 7

Auditor D𝑛 0.019 0.220 0.033 0.661 0.035 2.87 0.052 10.15

Dispute resolver DR 0.001 0.015 0.001 0.016 0.001 0.069 0.003 0.09

8, it also invokes the symmetric key encryption once to encrypt the

outgoing payment message. Thus, B’s complexity is 𝑂 (1).
8.1.3 Cost of Auditor D𝑗 . In Phase 10, each D𝑗 invokes the asym-

metric key encryption once to decrypt the private statements’ open-

ings. It also invokes the hash function twice to verify the openings.

It invokes the symmetric key encryption six times to decrypt C’s
and B’s messages that were posted on S (this includes C’s com-

plaint). Recall, in the same phase, each auditor encodes its verdict

using a verdict encoding protocol. Next, we evaluate the verdict

encoding complexity of each auditor for two cases: (a) 𝑒 = 1 and

(b) 𝑒 ∈ (1, 𝑛]. Note, in the former case the PVE is invoked while in

the latter GPVE is invoked. In case (a), every auditor D𝑗 , except

D𝑛 , invokes the pseudorandom function once to encode its verdict.

However, auditor D𝑛 invokes the pseudorandom function 𝑛 − 1

times and XORs the function’s outputs with each other. Thus, in

case (a), auditor D𝑛’s complexity is𝑂 (𝑛) while the rest of auditors’
complexity is 𝑂 (1). In case (b), every auditor D𝑗 , except D𝑛 , in-

vokes the pseudorandom function twice to encode its verdict. But,

auditor D𝑛 invokes the pseudorandom function 𝑛 − 1 times and

XORs the function’s outputs with each other. It invokes the pseudo-

random function 𝑛 times to generate all auditors’ representations

of verdict 1. It computes all 𝑦 =
𝑛∑
𝑖=𝑒

𝑛!

𝑖!(𝑛−𝑖)! combinations of the

representations that meet the threshold which involves𝑂 (𝑦) XORs.
It inserts 𝑦 elements into a Bloom filter that requires 𝑂 (𝑦) hash
function evaluations. So, in case (b), auditor D𝑛’s complexity is

𝑂 (𝑦) while the rest of the auditors’ complexity is𝑂 (1). To conclude,
in Phase 10, auditor D𝑛’s complexity is either 𝑂 (𝑛) or 𝑂 (𝑦), while
the rest of the auditors’ complexity is 𝑂 (1).
8.1.4 Cost of Dispute ResolverDR. We analyseDR’s cost in Phase
11. It invokes the hash function once to check the private state-

ment’s correctness. It also performs𝑂 (𝑛) symmetric key decryption

to decrypt auditors’ encoded verdicts. Now, we evaluate the ver-

dict decoding complexity of DR for two cases: (a) 𝑒 = 1 and (b)

𝑒 ∈ (1, 𝑛]. In the former case (in which FVD is invoked), it performs

𝑂 (𝑛) XOR to combine all verdicts. Its complexity is 𝑂 (𝑛) in the lat-

ter case (in which GFVD is invoked), with the difference that it also

invokes the Bloom filter’s hash functions, to make a membership

query to the Bloom filter. Thus, DR’s complexity is 𝑂 (𝑛).
8.2 Communication Cost
Now, we analyse the communication cost of the PwDR. Briefly, C’s
complexity is 𝑂 (1) as in total it sends only six messages to other

parties. Similarly, B’s complexity is 𝑂 (1) as its total number of

outgoing messages is only nine. Each auditor D𝑗 sends only four

messages to the smart contract, so its complexity is𝑂 (1). However,
if GFVD is invoked, then auditor D𝑛 needs to send also a Bloom

filter that costs it 𝑂 (𝑦). Moreover, DR’s complexity is 𝑂 (1), as its
outgoing messages include only four binary values.

8.3 Concrete Performance Analysis
In this section, we study the protocol’s performance. As we saw in

the previous section, the customer’s and bank’s complexity is very

low and constant; however, one of the auditors, i.e., auditorD𝑛 , and

the dispute resolver have non-constant complexities. These non-

constant overheads were mainly imposed by the verdict inducing-

decoding protocols. Therefore, to study these parties’ runtime in

the PwDR, we implemented both variants of the verdict encoding-

decoding protocols (that were presented in Section 7.4). They were

implemented in C++, see [1, 2] for the source code. To conduct the

experiment, we used a MacBook Pro laptop with quad-core Intel

Core 𝑖5, 2 GHz CPU, and 16 GB RAM. We ran the experiment on

average 100 times. The prototype implementation uses the “Cryp-

topp” library
2
for cryptographic primitives, the “GMP” library

3
for

arbitrary precision arithmetic, and the “Bloom Filter” library
4
. In

the experiment, we set the false-positive rate in a Bloom filter to

2
−40

and the finite field size to 128 bits. We used AES to implement

PRF. Table 2 (in Section 8) provides the runtime of D𝑛 and DR
for various numbers of auditors in two cases; namely, when the

threshold is 1 and when it is greater than 1. In the former case, we

used the PVE and FVD protocols. In the latter case, we used the

GPVE and GFVD ones.

As Table 2 depicts, the runtime of D𝑛 increases gradually from

0.019 to 10.15 milliseconds when the number of auditors grows

from 𝑛 = 6 to 𝑛 = 12. In contrast, the runtime of DR grows slower;

it increases from 0.001 to 0.09 milliseconds when the number of

auditors increases. Nevertheless, the overall cost is very low. Specif-

ically, the highest runtime is only about 10 milliseconds which

belongs to D𝑛 when 𝑛 = 12 and 𝑒 = 7. It is also evident that the

parties’ runtime in the PVE and FVD protocols is much lower than

their runtime in the GPVE and GFVD ones. To compare the par-

ties’ runtime, we also fixed the threshold to 6 (in GPVE and GFVD

protocols) and ran the experiment for different values of 𝑛. Figure

2
https://www.cryptopp.com

3
https://gmplib.org

4
http://www.partow.net/programming/bloomfilter/index.html

865

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Aydin Abadi and Steven J. Murdoch

5 summarises the result. As this figure indicates, the runtime of

D𝑛 and DR almost linearly grows when the number of auditors

increases. Moreover, D𝑛 has a higher runtime than DR has, and

its runtime growth is faster than that of DR.

10
0.8

10
0.9

10
1

10
1.1

10
−3

10
−2

10
−1

10
0

10
1

Number of auditors

P
a
r
t
i
e
s
r
u
n
t
i
m
e
i
n
m
s

D𝑛

DR

Figure 5: Parties’ runtime in the PwDR.

8.4 Transaction Latency
The transaction latency imposed by the blockchain to the PwDR

depends on the type of consensus protocol used. For instance, on

average it takes between 12 seconds in Ethereum to mine a block

[16]; after this block is propagated to the network, to have adequate

confidence that the block will remain in the chain, one may need to

wait until at least 6 blocks are added after that block, which would

take about 72 additional seconds. However, such a delay is lower

in Byzantine Fault Tolerance (BFT) Hyperledger Fabric blockchain

as it does not involve any mining and a consensus can be reached

faster, e.g., about 35 seconds when 20 nodes are involved, [21].

9 CONCLUSION
In this work, to facilitate APP fraud victims’ reimbursement, we

proposed the notion of payment with dispute resolution. We iden-

tified the vital properties that such a notion should possess and

formally defined them. We also proposed a candidate construc-

tion, PwDR, and proved its security. The PwDR not only offers

transparency and accountability but also acts as a data hub pro-

viding sufficient information that could help regulators examine

whether the reimbursement regulations have been applied correctly

and consistently among financial institutions. We also studied the

PwDR’s cost via asymptotic and concrete runtime evaluation. Our

cost analysis indicated that the construction is indeed efficient.

REFERENCES
[1] Aydin Abadi. 2023. Variant 1: Efficient Verdict Encoding-Decoding Proto-

col. https://github.com/AydinAbadi/PwDR/blob/main/PwDR-code/encoding-

decoding.cpp.

[2] Aydin Abadi. 2023. Variant 2: Generic Verdict Encoding-Decoding Proto-

col. https://github.com/AydinAbadi/PwDR/blob/main/PwDR-code/generic-

encoding-decoding.cpp.

[3] Aydin Abadi and Steven J. Murdoch. 2022. Payment with Dispute Resolution:

A Protocol For Reimbursing Frauds Victims (Full Version). Cryptology ePrint

Archive, Paper 2022/107. https://eprint.iacr.org/2022/107.

[4] Aydin Abadi, Steven J. Murdoch, and Thomas Zacharias. 2021. Recurring Con-

tingent Payment for Proofs of Retrievability. IACR Cryptol. ePrint Arch. (2021).
[5] Ross Anderson et al. 2007. Closing the phishing hole–fraud, risk and nonbanks.

In Federal Reserve Bank of Kansas City–Payment System Research Conferences.
[6] Ross Anderson, Chris Barton, Rainer Bölme, Richard Clayton, Carlos Ganán,

Tom Grasso, Michael Levi, Tyler Moore, and Marie Vasek. 2019. Measuring the

changing cost of cybercrime. (2019).

[7] Ingolf Becker, Alice Hutchings, Ruba Abu-Salma, Ross J. Anderson, Nicholas

Bohm, Steven J. Murdoch, M. Angela Sasse, and Gianluca Stringhini. 2017. Inter-

national comparison of bank fraud reimbursement: customer perceptions and

contractual terms. J. Cybersecur. (2017).
[8] Burton H. Bloom. 1970. Space/Time Trade-offs in Hash Coding with Allowable

Errors. Commun. (1970).
[9] Nicholas Bohm, Ian Brown, and Brian Gladman. 2000. Electronic Commerce:

Who Carries the Risk of Fraud? J. Inf. Law Technol. 2000 (2000).
[10] Michael Buchwald. 2019. Smart contract dispute resolution: the inescapable flaws

of blockchain-based arbitration. U. Pa. L. Rev. (2019).
[11] Confirmation of Payee Team. 2020. Confirmation of Payee- Response to consul-

tation CP20/1 and decision on varying Specific Direction 10. (2020).

[12] Scott A. Crosby and Dan S. Wallach. 2009. Efficient Data Structures For Tamper-

Evident Logging. In USENIX Security, Fabian Monrose (Ed.).

[13] Changyu Dong, Yilei Wang, Amjad Aldweesh, Patrick McCorry, and Aad van

Moorsel. 2017. Betrayal, Distrust, and Rationality: Smart Counter-Collusion

Contracts for Verifiable Cloud Computing. In CCS.
[14] Stefan Dziembowski, Lisa Eckey, and Sebastian Faust. 2018. FairSwap: How To

Fairly Exchange Digital Goods. In CCS.
[15] Lisa Eckey, Sebastian Faust, and Benjamin Schlosser. 2020. OptiSwap: Fast

Optimistic Fair Exchange. In ASIA CCS.
[16] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert van Renesse. 2016.

Bitcoin-NG: A Scalable Blockchain Protocol. In NSDI.
[17] Federal Bureau of Investigation (FBI). 2020. Internet Crime Report. (2020).

https://www.ic3.gov/Media/PDF/AnnualReport/2020_IC3Report.pdf.

[18] Adam French. 2016. Which? makes scams super-complaint-Banks must protect

those tricked into a bank transfer. (2016).

[19] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The Bitcoin Backbone

Protocol: Analysis and Applications. In EUROCRYPT.
[20] Matthew Green and Ian Miers. 2017. Bolt: Anonymous Payment Channels for

Decentralized Currencies. In CCS.
[21] Hyperledger Foundation. 2018. Hyperledger Blockchain Performance Metrics.

[22] Jonathan Katz and Yehuda Lindell. 2014. Introduction to Modern Cryptography,
Second Edition. CRC Press.

[23] Marte Eidsand Kjørven. 2020. Who pays when things go wrong? Online financial

fraud and consumer protection in Scandinavia and Europe. European Business
Law Review (2020).

[24] Ralf Küsters, Julian Liedtke, Johannes Müller, Daniel Rausch, and Andreas Vogt.

2020. Ordinos: A Verifiable Tally-Hiding E-Voting System. In EuroS&P.
[25] Ben Laurie, Adam Langley, and Emilia Käsper. 2013. Certificate Transparency.

RFC 6962 (2013), 1–27. https://doi.org/10.17487/RFC6962

[26] Lending Standards Board. 2021. Contingent Reimbursement Model Code for

Authorised Push Payment Scams. (2021). https://www.lendingstandardsboard.

org.uk/wp-content/uploads/2021/04/CRM-Code-LSB-Final-April-2021.pdf.

[27] Pietro Ortolani. 2016. Self-enforcing online dispute resolution: lessons from

bitcoin. Oxford Journal of Legal Studies (2016).
[28] Pietro Ortolani. 2019. The impact of blockchain technologies and smart contracts

on dispute resolution: arbitration and court litigation at the crossroads. Uniform
law review (2019).

[29] Joseph Poon and Thaddeus Dryja. 2016. The Bitcoin Lightning Network: Scal-
able Off-Chain Instant Payments. Technical Report. https://lightning.network/
lightning-network-paper.pdf.

[30] Bruce Schneier. 1996. Applied cryptography - protocols, algorithms, and source
code in C, 2nd Edition. Wiley.

[31] Enrique Soriano-Salvador and Gorka Guardiola Muzquiz. 2021. SealFS: Storage-

based tamper-evident logging. Comput. Secur. (2021).
[32] John L Taylor and Tony Galica. 2020. A New Code to Protect Victims in the UK

from Authorised Push Payments Fraud. Banking & Finance Law Review (2020).

[33] The Financial Ombudsman Service. 2020. Lending Standards Board Re-

view of the Contingent Reimbursement Model Code for Authorised

Push Payment Scams-Financial Ombudsman Service response. (2020).

https://www.financial-ombudsman.org.uk/files/289009/2020-10-02-LSB-CRM-

Code-Review-Financial-Ombudsman-Service-Response.pdf.

[34] The International Criminal Police Organization. 2021. Investment fraud via dating

apps. https://www.interpol.int/en/News-and-Events/News/2021/Investment-

fraud-via-dating-apps.

[35] UK Finance. 2021. 2021 Half Year Fraud Update. https://www.ukfinance.org.uk/

system/files/Half-year-fraud-update-2021-FINAL.pdf.

[36] UK Finance. 2021. THE DEFINITIVE OVERVIEW OF PAYMENT INDUSTRY

FRAUD. https://www.ukfinance.org.uk/system/files/Fraud%20The%20Facts%

202021-%20FINAL.pdf.

[37] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum project yellow paper (2014).

866

https://github.com/AydinAbadi/PwDR/blob/main/PwDR-code/encoding-decoding.cpp
https://github.com/AydinAbadi/PwDR/blob/main/PwDR-code/encoding-decoding.cpp
https://github.com/AydinAbadi/PwDR/blob/main/PwDR-code/generic-encoding-decoding.cpp
https://github.com/AydinAbadi/PwDR/blob/main/PwDR-code/generic-encoding-decoding.cpp
https://eprint.iacr.org/2022/107
https://www.ic3.gov/Media/PDF/AnnualReport/2020_IC3Report.pdf
https://doi.org/10.17487/RFC6962
https://www.lendingstandardsboard.org.uk/wp-content/uploads/2021/04/CRM-Code-LSB-Final-April-2021.pdf
https://www.lendingstandardsboard.org.uk/wp-content/uploads/2021/04/CRM-Code-LSB-Final-April-2021.pdf
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://www.financial-ombudsman.org.uk/files/289009/2020-10-02-LSB-CRM-Code-Review-Financial-Ombudsman-Service-Response.pdf
https://www.financial-ombudsman.org.uk/files/289009/2020-10-02-LSB-CRM-Code-Review-Financial-Ombudsman-Service-Response.pdf
https://www.interpol.int/en/News-and-Events/News/2021/Investment-fraud-via-dating-apps
https://www.interpol.int/en/News-and-Events/News/2021/Investment-fraud-via-dating-apps
https://www.ukfinance.org.uk/system/files/Half-year-fraud-update-2021-FINAL.pdf
https://www.ukfinance.org.uk/system/files/Half-year-fraud-update-2021-FINAL.pdf
https://www.ukfinance.org.uk/system/files/Fraud%20The%20Facts%202021-%20FINAL.pdf
https://www.ukfinance.org.uk/system/files/Fraud%20The%20Facts%202021-%20FINAL.pdf

Payment with Dispute Resolution:
A Protocol for Reimbursing Frauds Victims ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

Appendix A MORE DISCUSSION ON
DEFINITION 3

Definition 3 captures the case where resDispute(.) takes its inputs
�̂� and 𝑝𝑝 from a smart contract S. Since there is a (negligible)

probability that a smart contract’s state can be tampered with, the

definition also captures such an event. Also, the definition aims to

be as generic as possible, to capture the case where resDispute(.)
can be either randomised/probabilistic or deterministic (in this

paper, our PwDR that realises the definition relies on a deterministic

dispute resolution algorithm). However, in a simpler case, where

the parties send their messages directly to a fully trusted party (so

the probability of tampering with its state 0) and/or resDispute(.)
is deterministic, the definition can be slightly simplified.

Appendix B DISCUSSION ON PVE-FVD
First, we formally state our observation onwhichVariant 1 encoding-

decoding protocol relies and then prove it. Then, we explain why

this variant meets the three properties we laid out in Section 7.4, i.e.,

it should (1) generate unlinkable verdicts, (2) not require auditors

to interact with each other for each customer, and (3) be efficient.

Theorem 2. Let set 𝑆 = {𝑠
1
, ..., 𝑠𝑚} be the union of two disjoint sets 𝑆 ′

and 𝑆 ′′, where 𝑆 ′ contains non-zero random values pick uniformly

from a finite field F𝑝 , 𝑆
′′
contains zeros, |𝑆 ′ | ≥ 𝑐′ = 1, |𝑆 ′′ | ≥ 𝑐′′ = 0,

and pair (𝑐′, 𝑐′′) is public information. Then, 𝑟 =
𝑚⊕
𝑖=1

𝑠𝑖 reveals

nothing beyond the public information.

Proof. Let 𝑠
1
and 𝑠 , be two random values picked uniformly at

random from F𝑝 . Let 𝑠 = 𝑠
1
⊕ 0 ⊕ ... ⊕ 0︸ ︷︷ ︸

|𝑆′′ |

. Since 𝑠 = 𝑠
1
, two values

𝑠 and 𝑠 have identical distribution. Thus, 𝑠 reveals nothing in this

case. Next, let 𝑠 = 𝑠
1
⊕ 𝑠

2
⊕ ... ⊕ 𝑠 𝑗︸ ︷︷ ︸
|𝑆′ |

, where 𝑠𝑖 ∈ 𝑆 ′. Since each 𝑠𝑖 is a

uniformly random value, the XOR of them is a uniformly random

value too. That means values 𝑠 and 𝑠 have identical distributions.

Thus, 𝑠 reveals nothing in this case as well. Also, it is not hard to

see that the combination of the above two cases reveals nothing

too, i.e., 𝑠 ⊕ 𝑠 and 𝑠 have identical distribution. □

The primary reason this variant meets property 1 is that each

masked verdict reveals nothing about the verdict (and its represen-

tation) and given the final verdict, I cannot distinguish between

the case where there is exactly one auditor that voted 1 and the case

where multiple auditors voted 1, as in both cases I extracts only a

single random value, which reveals nothing about the number of

auditors which voted 0 or 1 (due to Theorem 2). Note, the protocols’

correctness holds with an overwhelming probability, i.e., 1 − 1

2
_ .

Specifically, if two auditors represent their verdict by an identical

random value, then when they are XORed they would cancel out

each other which can affect the result’s correctness. The same holds

if the XOR of multiple verdicts’ representations results in a value

that can cancel out another verdict’s representation. Nevertheless,

the probability that such an event occurs is negligible in the security

parameter |𝑝 | = _, i.e., the probability is at most
1

2
_ . It is evident

that this variant meets property 2 as the auditors interact with each

other only once (to agree on a key) for all customers. It also meets

property 3 as it involves pseudorandom function invocations and

XOR operations which are highly efficient operations.

Appendix C GPVE & GFVD
We present the generic verdict encoding-decoding protocols (i.e.,

GPVE and GFVD) in Figures 6 and 7 in the paper’s full version [3].

They let a semi-honest third party I find out if at least 𝑒 auditors

voted 1, where 𝑒 can be any integer in the range [1, 𝑛]. As Figure
6 indicates (and as we discussed in Section 7.4) after D𝑛 gener-

ates all combinations of verdict 1’s representations, it inserts the

combinations into a Bloom filter, to preserve the representations’

privacy from I. Note, instead of inserting the combinations into

a Bloom filter, we could hash the combinations and give the hash

values to I. However, using a Bloom filter lets us save considerable

communication costs. Let us see a concrete example. Let 𝑛 = 10,

𝑒 = 6, and the hash function be SHA-256. If the latter (hash-based)

approach is used,D𝑛 needs to send |𝑊 | × 256 = 386× 256 = 98, 816

bits to I, whereas if the former (Bloom filter-based) approach is

used, then it only needs to send |BF| = 22, 276 bits to I. Thus, by
using a Bloom filter, it can save communication costs by at least a

factor of 4.

Appendix D GPVE-GFVE’S PROOF
Below, we first formally state our main observation on which Vari-

ant 2 encoding-decoding protocol relies. After that, we prove it.

Theorem 3. Let 𝑆 = {𝑠
1
, ..., 𝑠𝑚} be a set of random values picked

uniformly from finite field F𝑝 , where the cardinality of 𝑆 is public

information. Let BF be a Bloom filter encoding all elements of 𝑆 .

Then, BF reveals nothing about any element of 𝑆 , beyond the public

information, except with a negligible probability in the security

parameter _, i.e., with a probability at most
|𝑆 |
2
_ .

Proof. First, we consider the simplest case where only a single

element of 𝑆 is encoded in BF. In this case, due to the pre-image

resistance of the Bloom filter’s hash functions and the fact that

the set’s element was picked uniformly at random from F𝑝 , the
probability that BF reveals anything about the original element is at

most
1

2
_ . Now, we move on to the case where all elements of 𝑆 are

encoded in BF. In this case, the probability that BF reveals anything

about at least an element of the set is
|𝑆 |
2
_ , due to the pre-image

resistance of the hash functions, the fact that all elements were

selected uniformly at random from the finite field, and the union

bound. Nevertheless, when a BF’s size is set appropriately to avoid

false-positive without wasting storage, this reveals the number of

elements encoded in it, which is public information. Thus, the only

information BF reveals is the public one. □

Appendix E (G)PVE-(G)FVD VERSUS
EXISTING VOTING PROTOCOLS

Each variant of our verdict encoding-decoding protocol is a voting

mechanism. It lets a third party, I, find out if a threshold of the

auditors voted 1, while (i) generating unlinkable verdicts, (ii) not

requiring auditors to interact with each other for each customer, (iii)

hiding the number of 0 or 1 verdicts from I, and (iv) being efficient.

Therefore, it is natural to ask: Is there any e-voting protocol, in the
literature, that can simultaneously satisfy all the above requirements?

The short answer is no. Recently, a provably secure e-voting

protocol that can hide the number of 1 and 0 votes was proposed by

867

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Aydin Abadi and Steven J. Murdoch

Kusters et al. [24]. Although this scheme can satisfy the above secu-
rity requirements, it imposes a high computation cost, as it involves

computationally expensive primitives such as zero-knowledge proofs,

threshold public-key encryption scheme, and generic multi-party

computation. In contrast, our verdict encoding-decoding protocols

rely on much more lightweight operations such as XOR and hash

function evaluations. We also highlight that our verdict encoding-

decoding protocols are in a different setting than the one in which

most of the e-voting protocols are. Because the former protocols

are in the setting where there exists a small number of auditors (or

voters) which are trusted and can interact with each other once;

whereas, the latter (e-voting) protocols are in a more generic setting

where there is a large number of voters, some of which might be

malicious, and they are not required to interact with each other.

Note that each variant of our verdict encoding-decoding protocol

requires every auditor to provide an encoded vote in order for I to

extract the final verdict. To let each variant terminate andI find out

the final verdict in the case where a set of auditors do not provide

their vote, we can integrate the following idea into each variant. We

define a manager auditor, say D𝑛 , which is always responsive and

keeps track of missing votes. After the voting time elapses and D𝑛

realises a certain number of auditors did not provide their encoded

vote, it provides 0 votes on their behalf and masks them using the

auditors’ masking values.

Appendix F THE DEPLOYMENT OF PWDR
The PwDR protocol is agnostic to the payment system it is enhanc-

ing. From a deployment perspective, the simplest solution is for

the payment system provider to act on behalf of the customer in

executing the smart contract. Of course, a malicious payment sys-

tem provider could fail to register correct information in the smart

contract but consumer organisations and regulators could check

for such behaviour by inserting audit transactions and checking the

blockchain. Alternatively, customers could make use of Payment

Initiation Service Providers (PISPs) enabled by the Open Banking

API of payment systems in the UK and EU. The PISP would be

selected by the customer and act on behalf of the customer in both

initiating the transfer with the bank and participating in the smart

contract. A final option would be for the smart contract client to be

integrated directly into the customer’s online banking application

either through integrating with documented APIs or by hooking

functionality in the customer’s web browser.

Appendix G SECURITY ANALYSIS OF PWDR
In this section, we prove the security theorem of the PwDR, i.e.,

Theorem 1. To prove it, we show that the PwDR satisfies all security

properties defined in Section 6. We first prove that it meets security

against a malicious victim.

Lemma 1. If the digital signature is existentially unforgeable under

chosen message attacks, and the SAP and blockchain are secure,

then PwDR is secure against a malicious victim, w.r.t. Definition 3.

Proof. First, we focus on event I : (𝑚 (B)
1

= 𝑤𝑎𝑟𝑛𝑖𝑛𝑔)∧(
𝑛∑
𝑗=1

𝑤
1, 𝑗 ≥

𝑒) which considers the case where B has provided a warning mes-

sage but Cmanages to convince at least the threshold of the auditors

to set their verdicts to 1, that ultimately results in

𝑛∑
𝑗=1

𝑤
1, 𝑗 ≥ 𝑒 . We

argue that the adversary’s success probability in this event is neg-

ligible. Specifically, due to the security of SAP (i.e., the binding

property of the SAP’s commitment), C cannot convince an audi-

tor to accept a different decryption key, e.g., 𝑘′ ∈ ¥𝜋 ′, that will be
used to decrypt B’s encrypted message �̂�

(B)
1

, other than what was

agreed between C and B in the initiation phase, i.e.,
¯𝑘

1
∈ ¥𝜋

1
. To

be more precise, it cannot persuade an auditor to accept a state-

ment ¥𝜋 ′, where ¥𝜋 ′ ≠ ¥𝜋
1
, except with a negligible probability, ` (_).

This ensures that honest B’s original message (and accordingly the

warning) is accessed by every auditor with a high probability.

Next, we consider event II : (
𝑛∑
𝑗=1

𝑤
1, 𝑗 < 𝑒) ∧ (𝑣

1
= 1) that captures

the case where only less than the threshold of the auditors approved

that the pass message was given incorrectly or the missing message

could prevent the APP fraud, but the final verdict thatDR extracts

implies that at least the threshold of the auditors approved that. We

argue that the probability that this event occurs is negligible in the

security parameter too. Specifically, due to the binding property

of the SAP, C cannot persuade (a) an auditor to accept a different

encryption key and (b) DR to accept a different decryption key

other thanwhat was agreed between C andB in the initiation phase.

More precisely, it cannot persuade them to accept a statement ¥𝜋 ′,
where ¥𝜋 ′ ≠ ¥𝜋

2
, except with a negligible probability, ` (_).

Now, we move on to event III : (checkWarning(𝑚 (B)
1
) = 1) ∧

(
𝑛∑
𝑗=1

𝑤
2, 𝑗 ≥ 𝑒). It captures the case where B has provided an effective

warning message but C manages to make at least the threshold

of the auditors set their verdicts to 1, that ultimately results in

𝑛∑
𝑗=1

𝑤
2, 𝑗 ≥ 𝑒 . The same argument provided to event I is applicable

to this even too. Briefly, due to the security of the SAP, C cannot

persuade an auditor to accept a different decryption key other than

what was agreed between C andB in the initiation phase. Therefore,

all auditors will receive the original message of B, including the

effective warning message, except a negligible probability, ` (_).
Now, we consider event IV : (

𝑛∑
𝑗=1

𝑤
2, 𝑗 < 𝑒) ∧ (𝑣

2
= 1) which captures

the case where at least the threshold of the auditors approved

that the warning message was effective but the final verdict that

DR extracts implies that they approved the opposite. The security

argument of event II applies to this event as well. In short, due to

the security of the SAP, C cannot persuade an auditor to accept

a different encryption key, and cannot convince DR to accept

a different decryption key other than what was initially agreed

between C and B, except a negligible probability, ` (_). Now, we
analyse event V : 𝑢 ∉ 𝑄 ∧ Sig.ver(𝑝𝑘,𝑢, 𝑠𝑖𝑔) = 1. This even

captures the case where the malicious victim comes up with a valid

signature/certificate on a message that has never been queried to

the signing oracle. But, due to the existential unforgeability of the

digital signature scheme, the probability that such an event occurs is

negligible, ` (_). Next, we focus on event VI : (
𝑛∑
𝑗=1

𝑤
3, 𝑗 < 𝑒)∧(𝑣

3
= 1)

that considers the case where less than the threshold of the auditors

indicated that the signature (in C’s complaint) is valid, but the final

verdict that DR extracts implies that at least the threshold of the

auditors approved the signature. This means the adversarymanaged

to switch the verdicts of those auditors who voted 0 to 1. However,

the probability that this even occurs is negligible as well. Because,

868

Payment with Dispute Resolution:
A Protocol for Reimbursing Frauds Victims ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

due to the SAP’s binding property, C cannot convince an auditor

and DR to accept different encryption and decryption keys other

than what was initially agreed between C andB, except a negligible
probability, ` (_). Therefore, with only a negligible probability the

adversary can switch a verdict for 0 to the verdict for 1.

A malicious C cannot frame an honestB for providing an invalid

message by manipulating the smart contract’s content, e.g., by

replacing an effective warning with an ineffective one in S, or
excluding a warning from S. To do that, it has to either forge

the honest party’s signature, so it can send an invalid message

on its behalf, or fork the blockchain so the chain comprising a

valid message is discarded. In the former case, the adversary’s

probability of success is negligible as long as the signature is secure.

The adversary has the same success probability in the latter case

because it has to generate a long enough chain that excludes the

valid message which has a negligible success probability, under the

assumption that the hash power of the adversary is lower than those

of honest miners and due to the blockchain’s liveness property an

honestly generated transaction will eventually appear on an honest

miner’s chain [19]. □
Next, we present a lemma formally stating that the PwDR is

secure against a malicious bank and then prove this lemma.

Lemma 2. If the SAP and blockchain are secure, and the correctness
of verdict encoding-decoding protocols (i.e., PVE and FVD) holds,

then PwDR is secure against a malicious bank, w.r.t. Definition 4.

Proof. We first focus on event I : (
𝑛∑
𝑗=1

𝑤
1, 𝑗 ≥ 𝑒) ∧ (𝑣

1
= 0)

which captures the case where DR is convinced that the pass

message was correctly given or an important warning message

was not missing, despite at least the threshold of the auditors do

not believe so. We argue that the probability that this event takes

place is negligible in the security parameter. Because, due to the

SAP’s binding property, B cannot persuade DR to accept a dif-

ferent decryption key, e.g., 𝑘′ ∈ ¥𝜋 ′, other than what was agreed

between C and B in the initiation phase, i.e.,
¯𝑘

2
∈ ¥𝜋

2
, except with

a negligible probability. Specifically, it cannot persuade DR to

accept a statement ¥𝜋 ′, where ¥𝜋 ′ ≠ ¥𝜋
2
except with probability

` (_). Also, as discussed in Section 7.4, due to the correctness of

the verdict encoding-decoding protocols, i.e., PVE and FVD, the

probability that multiple representations of verdict 1 cancel out

each other is negligible too, i.e., it is at most
1

2
_ . Thus, event I oc-

curs only with a negligible probability, ` (_). To assert that events

II : (
𝑛∑
𝑗=1

𝑤
2, 𝑗 ≥ 𝑒) ∧ (𝑣

2
= 0), III : (

𝑛∑
𝑗=1

𝑤
3, 𝑗 ≥ 𝑒) ∧ (𝑣

3
= 0), and

IV : (
𝑛∑
𝑗=1

𝑤
4, 𝑗 ≥ 𝑒) ∧ (𝑣

4
= 0) occur only with a negligible probabil-

ity, we can directly use the above argument provided for event I.

To avoid repetition, we do not restate them in this proof. Moreover,

a malicious B cannot frame an honest C for providing an invalid

message by manipulating the smart contract’s content, e.g., by re-

placing its valid signature with an invalid one or sending a message

on its behalf, due to the security of the blockchain. □
Next, we prove the PwDR’s privacy.

Lemma 3. If the symmetric key and asymmetric key encryption

schemes are CPA-secure, and the SAP and encoding-decoding

schemes (i.e., PVE and FVD) are secure, then PwDR is privacy-

preserving, w.r.t. Definition 5.

Proof. We first focus on property 1, i.e., the privacy of the par-

ties’ messages from the public. Due to the privacy-preserving prop-

erty of the SAP, that relies on the hiding property of the commit-

ment scheme, given the public commitments, 𝑔 := (𝑔
1
, 𝑔

2
), the ad-

versary learns no information about the committed values, (¯𝑘
1
, ¯𝑘

2
),

except with a negligible probability, ` (_). Thus, it cannot find
the encryption-decryption keys used to generate ciphertext �̂�, ˆ𝒍, 𝑧,
and �̂� . Moreover, due to the semantical security of the symmet-

ric key and asymmetric key encryption schemes, given ciphertext

(�̂�, ˆ𝒍, 𝑧, ¥̂𝜋, �̂�) the adversary cannot learn anything about the related

plaintext, except with a negligible probability, ` (_). Thus, in ex-

periment ExpA1

3
, adversary A

1
cannot tell the value of 𝛾 ∈ {0, 1}

significantly better than just guessing it, i.e., its success probabil-

ity is at most
1

2
+ ` (_). Now we move on to property 2, i.e., the

privacy of each verdict from DR. Due to the privacy-preserving

property of the SAP, given 𝑔
1
∈ 𝑔, a corrupt DR cannot learn

¯𝑘
1
.

So, it cannot find the encryption-decryption key used to generate

ciphertext �̂�, ˆ𝒍 , and 𝑧. Also, public parameters (𝑝𝑘, 𝑝𝑝) and token𝑇
2

are independent of C’s and B’s exchanged messages (e.g., payment

requests or warning messages) and D𝑗 s verdicts. Furthermore, due

to the semantical security of the symmetric key and asymmetric

key encryption schemes, given ciphertext (�̂�, ˆ𝒍, 𝑧, ¥̂𝜋) the adversary
cannot learn anything about the related plaintext, except with a

negligible probability, ` (_). Also, due to the security of the PVE

and FVD protocols (i.e., Theorem 2), the adversary cannot link a

verdict to a specific auditor with a probability significantly better

than the maximum probability, 𝑃𝑟 ′, that an auditor sets its verdict

to a certain value, i.e., its success probability is at most 𝑃𝑟 ′ + ` (_),
even if it is given the final verdicts, except when all auditors’ ver-

dicts are 0. Hence, excluding the case where all verdicts are 0, given

(𝑇
2
, 𝑝𝑘, 𝑝𝑝, 𝑔, �̂�, ˆ𝒍, 𝑧, ¥̂𝜋, �̂�, 𝒗),A

3
’s success probability in experiment

ExpA2

4
to link a verdict to an auditor is at most 𝑃𝑟 ′ + ` (_). □

Theorem 4. The PwDR is secure, w.r.t. Definition 6.

Proof. Due to Lemma 1, the PwDR is secure against a malicious

victim. Also, due to lemmas 2 and 3 it is secure against a malicious

bank and is privacy-preserving, respectively. Thus, it satisfies all

the properties of Definition 6, meaning that the PwDR is indeed

secure according to this definition. □

869

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	3.1 Authorised Push Payment Fraud
	3.2 Dispute Resolution

	4 Preliminaries
	4.1 Taxonomy and Assumptions
	4.2 Digital Signature
	4.3 Smart Contract
	4.4 Commitment Scheme
	4.5 Statement Agreement Protocol
	4.6 Pseudorandom Function
	4.7 Bloom Filter

	5 Challenges to Overcome
	5.1 Challenge 1: Lack of Transparent Logs
	5.2 Challenge 2: Lack of Effective Warning's Accurate Definition in Banking
	5.3 Challenge 3: Linking Off-chain Payments with a Smart Contract
	5.4 Challenge 4: Preserving Privacy

	6 Definition of Payment with Dispute Resolution Scheme
	7 Payment with Dispute Resolution Protocol
	7.1 An Overview of the Protocol
	7.2 A Subroutine for Determining Bank's Message Status
	7.3 A Subroutine for Checking a Warning's Effectiveness
	7.4 Subroutines for Encoding-Decoding Verdicts
	7.5 The PwDR

	8 Evaluation
	8.1 Computation Complexity
	8.2 Communication Cost
	8.3 Concrete Performance Analysis
	8.4 Transaction Latency

	9 Conclusion
	References
	A More Discussion on Definition 3
	B Discussion on PVE-FVD
	C GPVE & GFVD
	D GPVE-GFVE's Proof
	E (G)PVE-(G)FVD Versus Existing Voting Protocols
	F The Deployment of PwDR
	G Security Analysis of PwDR

