
Technical Report
Number 877

Computer Laboratory

UCAM-CL-TR-877
ISSN 1476-2986

Capability Hardware
Enhanced RISC Instructions:
CHERI Programmer’s Guide

Robert N. M. Watson, David Chisnall,
Brooks Davis, Wojciech Koszek,

Simon W. Moore, Steven J. Murdoch,
Peter G. Neumann, Jonathan Woodruff

September 2015

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2015 Robert N. M. Watson, David Chisnall,
Brooks Davis, Wojciech Koszek, Simon W. Moore,
Steven J. Murdoch, Peter G. Neumann, Jonathan Woodruff,
SRI International

Approved for public release; distribution is unlimited.
Sponsored by the Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Laboratory
(AFRL), under contracts FA8750-10-C-0237 (“CTSRD”) as
part of the DARPA CRASH research program. The views,
opinions, and/or findings contained in this report are those of
the authors and should not be interpreted as representing the
official views or policies, either expressed or implied, of the
Department of Defense or the U.S. Government.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract
The CHERI Programmer’s Guide documents the software environment for the Capability Hard-
ware Enhanced RISC Instructions (CHERI) prototype developed by SRI International and the
University of Cambridge. The Guide is targeted at hardware and software developers working
with capability-enhanced software. It describes how to use the CHERI Clang/LLVM compiler
suite and CheriBSD operating system – versions of the off-the-shelf LLVM suite and FreeBSD
operating system adapted to use CHERI’s protection features – as well as implementation de-
tails of both.

3

Acknowledgments
The authors of this report thank other members of the CTSRD team, and our past and current
research collaborators at SRI and Cambridge:

Ross J. Anderson Jonathan Anderson Ruslan Bukin Gregory Chadwick
Nirav Dave Lawrence Esswood Khilan Gudka Jong Hun Han
Alex Horsman Alexandre Joannou Asif Khan Myron King
Chris Kitching Ben Laurie Patrick Lincoln Anil Madhavapeddy
Ilias Marinos A. Theodore Markettos Ed Maste Andrew W. Moore
Will Morland Alan Mujumdar Prashanth Mundkur Robert Norton
Philip Paeps Alex Richardson Michael Roe Colin Rothwell
John Rushby Hassen Saidi Hans Petter Selasky Muhammad Shahbaz
Stacey Son Andrew Turner Richard Uhler Munraj Vadera
Philip Withnall Hongyan Xia Bjoern A. Zeeb

The CTSRD team also thanks past and current members of its external oversight group for
significant support and contributions:

Lee Badger Simon Cooper Rance DeLong Jeremy Epstein
Virgil Gligor Li Gong Mike Gordon Steven Hand
Andrew Herbert Warren A. Hunt Jr. Doug Maughan Greg Morrisett
Brian Randell Kenneth F. Shotting Joe Stoy Tom Van Vleck
Samuel M. Weber

We would also like to acknowledge the late David Wheeler and Paul Karger, whose conver-
sations with the authors about the CAP computer and capability systems contributed to our
thinking on CHERI.

Finally, we are grateful to Howie Shrobe, MIT professor and past DARPA CRASH program
manager, who has offered both technical insight and support throughout this work. We are also
grateful to Robert Laddaga and Stu Wagner, who succeeded Howie in overseeing the CRASH
program, and to Daniel Adams and Laurisa Goergen, SETAs supporting the program.

4

Contents

1 Introduction 7
1.1 Background . 7
1.2 Getting CHERI . 8
1.3 Licensing . 8
1.4 Publications . 8
1.5 Version History . 10
1.6 Document Structure . 12

I Compiler 13

2 Building and Using CHERI Clang 15
2.1 Cross-Compiling for CHERI . 15

2.1.1 Building a Complete SDK . 15
2.1.2 Building the Assembler . 15
2.1.3 Building the Compiler . 16

2.2 Using Clang . 17
2.3 Disassembling CHERI Binaries . 17
2.4 Assembly Extensions . 18

2.4.1 Capability Move . 18
2.4.2 Capability-Relative Floating-Point Loads and Stores 18

3 Abstract model 19
3.1 Capabilities as pointers . 19
3.2 Operations on capabilities . 19
3.3 Integers in capabilities . 19
3.4 The different ABIs . 20

4 C compiler support 21
4.1 Supported targets . 21
4.2 The pure-capability ABI . 21
4.3 Pointer qualifiers . 21
4.4 Pragmas for generating capabilities . 22
4.5 Built-in functions . 23
4.6 Predefined macros . 23
4.7 __intcap_t . 23
4.8 Input and output . 26

5

4.9 Inline assembly . 27
4.10 memcap.h . 27
4.11 Compiler assistance for cross-domain calls . 28

5 LLVM implementation 31
5.1 Address space 200 . 31
5.2 Data layout . 31
5.3 Alignment of types . 31
5.4 SelectionDAG types . 32
5.5 LLVM IR Intrinsics . 32

6 The CHERI ABIs 35
6.1 Register usage . 35

6.1.1 The pure-capability ABI . 35
6.2 Calling conventions . 35

6.2.1 Variadic calls . 36
6.3 Cross-domain calls: “ccall” . 36
6.4 Global initialization . 38
6.5 Return address protection . 39

II Operating System 41

7 Building and Using CheriBSD 43
7.1 Obtaining FreeBSD/BERI and CheriBSD Source Code 43
7.2 Building CheriBSD . 43

7.2.1 CheriBSD Build Process . 43
7.3 Building the CheriBSD Kernel . 44

8 CheriBSD Kernel 47
8.1 CheriBSD Kernel Source Code . 48
8.2 Capability-Register-File Context Switching 49

8.2.1 Thread Control Block and Thread State 50
8.2.2 Context-Switching Philosophy . 50
8.2.3 PCB Setup and State Changes . 50
8.2.4 Types of Context Switches . 50

8.3 CCall/CReturn Fast Exception Handlers . 51
8.4 Trusted-Stack Manipulation . 51
8.5 CHERI-Aware Signal Handling . 52
8.6 Copying Memory . 53
8.7 Tracing Extensions . 53
8.8 Kernel Debugger Extensions . 54
8.9 CheriABI . 54

9 CheriBSD Userspace 55
9.1 CheriBSD Userspace Source Code . 55

6

Chapter 1

Introduction

This is the Programmer’s Guide for the Capability Hardware Enhanced RISC Instructions
(CHERI) hardware-software system prototype. The Guide complements the CHERI Instruction-
Set Architecture [13] (which specifies the CHERI ISA), the BERI Hardware Reference [15]
(which describes the hardware prototype), and the BERI Software Reference [9] (which de-
scribes the BERI software development environment).

The CHERI Programmer’s Guide describes the CHERI-extended Clang/LLVM toolchain [4]
and CheriBSD, a CHERI-extended version of the FreeBSD operating system [5]. The Guide
is intended to address the needs of hardware and software developers who are prototyping
new hardware features or bringing up operating systems, language runtimes, and compilers on
CHERI. Future iterations will continue to flesh out operational aspects of the CHERI proces-
sor and its use, as well as further details of software design philosophies and implementation
approaches to employing CHERI.

1.1 Background
Capability Hardware Enhanced RISC Instructions (CHERI), developed by SRI International
and the University of Cambridge, are security extensions for the 64-bit MIPS Instruction Set
Architecture (ISA). The CHERI ISA provides direct processor support for fine-grained memory
protection and scalable compartmentalization of (and within) system software and application
software.

Whereas traditional CPU designs impose heavy performance and programmability penal-
ties for employing fine-grained memory protection and compartmentalization, CHERI’s ISA
features support fast and easy memory safety and application compartmentalization of C-
language systems software. These improvements are made possible by integrated processor
support for continuous memory protection and enforcement using memory capabilities and
the object-capability model. Contemporary software trusted computing bases (TCBs) such as
operating-system kernels and language runtimes are particularly interesting targets, as CHERI
will allow us to improve their security and reliability – and, therefore, the security and reliabil-
ity of applications built on top of those services.

Detailed information on the CHERI ISA and possible uses, as well as related work, may
be found in the CHERI Instruction-Set Architecture [13], including new coprocessor registers
and instructions. The CHERI prototype is a reference implementation of the CHERI ISA,
intended to help validate the approach through a complete system implementation. The CHERI

7

processor is based on the Bluespec Extensible RISC Implementation (BERI) FPGA soft core,
and is implemented as an additional coprocessor. The distinction between BERI and CHERI is
evolving; however, our hope is that BERI will be a reusable platform across multiple research
projects relating to the hardware-software interface. We have open sourced both our hardware
prototypes and software support for them in the form of FreeBSD device drivers, extensions to
the Clang/LLVM compiler suite, and CheriBSD, a version of FreeBSD enhanced to utilize the
CHERI ISA for fine-grained memory protection and compartmentalization.

1.2 Getting CHERI
Our CHERI hardware and software prototypes are distributed as open source via the BERI
website:

http://www.beri-cpu.org/

1.3 Licensing
The BERI hardware design, simulated peripherals, and software tools are available under the BERI
Hardware-Software License, a lightly modified version of the Apache Software License that takes into
account hardware requirements.

We have released our extensions to the FreeBSD operating system to support BERI under a BSD
license; initial support for BERI was included in FreeBSD 10.0, with further features appearing in
FreeBSD 10.1. We have also released versions of FreeBSD and Clang/LLVM that support the CHERI
ISA under a BSD license; these are distributed via GitHub – details appear in later chapters on installing
and using these pieces of software.

We welcome contributions to the BERI project; however, we are only able to accept non-trivial
changes when an individual or corporate contribution agreement has been signed. The BERI hardware-
software license and contribution agreement may be found at:

http://www.beri-open-systems.org/

1.4 Publications
As our approach has evolved, and project developed, we have published a number of papers and reports
describing aspects of the work. We published several workshop papers laying out early aspects of our
approach:

• Our philosophy in revisiting of capability-based approaches is described in Capabilities Revis-
ited: A Holistic Approach to Bottom-to-Top Assurance of Trustworthy Systems, published at the
Layered Assurance Workshop (LAW 2010) [6], shortly after the inception of the project.

• Mid-way through creation of both the BERI prototyping platform, and CHERI ISA model, we
published CHERI: A Research Platform Deconflating Hardware Virtualization and Protection
at the Workshop on Runtime Environments, Systems, Layering and Virtualized Environments
(RESoLVE 2012) [17].

• Jonathan Woodruff, whose PhD dissertation describes our initial CHERI prototype, published
a workshop paper on this work at the CEUR Workshop’s Doctoral Symposium on Engineering

8

http://www.beri-cpu.org/
http://www.beri-open-systems.org/

Secure Software and Systems (ESSoS 2013): Memory Segmentation to Support Secure Applica-
tions [6].

We have also published a series of conference papers describing our hardware and software ap-
proaches in greater detail, along with evaluations of micro-architectural impact, software performance,
compatibility, and security:

• In the International Symposium on Computer Architecture (ISCA 2014), we published The CHERI
Capability Model: Revisiting RISC in an Age of Risk [18]. This paper describes our architectural
and micro-architectural approaches with respect to capability registers and tagged memory, hy-
bridization with a conventional Memory Management Unit (MMU), and our high-level software
compatibility strategy with respect to operating systems.

• In the International Conference on Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS 2015), we published Beyond the PDP-11: Architectural support for a
memory-safe C abstract machine [1], which extends our architectural approach to better support
convergence of pointers and capabilities, as well as to further explore the C-language compatibil-
ity and performance impacts of CHERI in larger software corpora.

• In the IEEE Symposium on Security and Privacy (IEEE S&P 2015), we published CHERI: A
Hybrid Capability-System Architecture for Scalable Software Compartmentalization [16], which
describes a hardware-software architecture for mapping compartmentalized software into the
CHERI capability model, as well as extends our explanation of hybrid operating-system support
for CHERI.

• In the ACM Conference on Computer and Communications Security (CCS 2015), we published
Clean Application Compartmentalization with SOAAP [3], which describes our higher-level de-
sign approach to software compartmentalization as a a form of vulnerability mitigation, including
static and dynamic analysis techniques to validate the performance and effectiveness of compart-
mentalization.

We have additionally released several technical reports, including this document, describing our
approach and prototypes. Each has had multiple versions reflecting evolution of our approach:

• The Capability Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architecture [11,
12, 13] describes the CHERI instruction set, both as a high-level, software-facing model and
the specific mapping into the 64-bit MIPS instruction set. Successive versions have introduced
improved C-language support, support for scalable compartmentalization, and compressed capa-
bilities.

• This report, the Capability Hardware Enhanced RISC Instructions: CHERI Programmer’s Guide [10],
describes in greater detail our mapping of software into instruction-set primitives in both the
compiler and operating system; earlier versions of the document were released as the Capability
Hardware Enhanced RISC Instructions: CHERI User’s Guide [8].

• The Bluespec Extensible RISC Implementation: BERI Hardware Reference [14, 15] describes
hardware aspects of our prototyping platform, including physical platform and practical user con-
cerns.

• The Bluespec Extensible RISC Implementation: BERI Software Reference [7, 9] describes non-
CHERI-specific software aspects of our prototyping platform, including software build and prac-
tical user concerns.

9

• The technical report, Clean application compartmentalization with SOAAP (extended version) [2],
provides a more detailed accounting of the impact of software compartmentalization on software
structure and security using conventional designs, with potential applicability to CHERI-based
designs as well.

Further research publications and technical reports will be forthcoming.

1.5 Version History
1.0 An initial version of the CHERI User’s Guide documented the implementation status of the CHERI

prototype, including the CHERI ISA and processor implementation, as well as user information
on how to build, simulate, debug, test, and synthesize the prototype.

1.1 Minor refinements were made to the text and presentation of the document, with incremental updates
to its descriptions of the SRI/Cambridge development and testing environments.

1.2 This version of the CHERI User’s Guide followed an initial demonstration of CHERI synthesized
for the Terasic tPad FPGA platform. The Guide contained significant updates on the usability
of CHERI features, the build process, and debugging features such as CHERI’s debug unit. A
chapter was added on Deimos, a demonstration microkernel for the CHERI architecture.

1.3 The document was restructured into hardware prototype and software reference material. Infor-
mation on the status of MIPS ISA implementation was updated and expanded, especially with
respect to the MMU. Build dependencies were updated, as was information on the CHERI sim-
ulation environment. The distinction between BERI and CHERI was discussed in detail. The
Altera development environment was described in its own chapter. A new chapter was added that
detailed bus and device configuration and use of the Terasic tPad and DE4 boards, including the
Terasic/Cambridge MTL touch screen display. New chapters were added on building and using
CheriBSD, as well as a chapter on FreeBSD device drivers on BERI/CHERI. A new chapter was
added on cross-building and using the CHERI-modified Clang/LLVM suite, including C-language
extensions for capabilities.

1.4 This version introduced improved Altera build and Bluespec simulation instructions. A number
of additional C-language extensions that can be mapped into capability protections were intro-
duced. FreeBSD build instructions were updated for changes to the FreeBSD cross-build system.
Information on the CHERI2 prototype was added.

1.5 In this version of the CHERI User’s Guide, several chapters describe the CHERI hardware prototype
have been moved into a separate document, the CHERI Platform Reference Manual, leaving the
User’s Guide focused on software-facing activities.

1.6 This version updated the CHERI User’s Guide for changes in the CheriBSD build including support
for the CFI driver, incorporation of Subversion into the FreeBSD base tree, and non-root cross
builds. It also added information on the quartus_pgm command, and made a number of minor
clarifications and corrections throughout the document.

1.7 In this version, information on building and using FreeBSD/BERI was moved to the BERI Software
Reference. A short chapter describing CheriBSD was retained, and updated to reflect a migration
from Perforce to Github. Information on the CHERI Clang/LLVM compiler was updated to
include new C-language extensions. CheriBSD build instructions were extended to support the the
CHERI Clang/LLVM compiler. Information on CheriBSD extensions to FreeBSD was expanded.

10

1.8 - UCAM-CL-TR-851 This version of the CHERI User’s Guide was made available as a Univer-
sity of Cambridge Technical Report. Information on CheriBSD was updated to reflect enhanced
support for sandboxing, signal handling, and testing. A variety of changes were made to reflect
open sourcing of the BERI/CHERI processors and associated software stacks. New CHERI Clang
built-in functions for clearing capability-pointer tags and querying the capability-program counter
are now documented.

1.9 This version of the CHERI User’s Guide is timed for delivery at the end of the fourth year of the
CTSRD Project. It provides significantly more detailed information on the CheriBSD kernel,
including information on context switching, kernel support for userspace object capabilities, fault
handling, and interfaces used by the userspace TCB.

1.10 This version of the document has been prepared as a draft delivery to DARPA.

1.11 The CHERI User’s Guide has been renamed to the CHERI Programmer’s Guide. This version of
the document has been prepared for delivery to DARPA, and satisfies the 2015 annual deliverable
A010 for what was formerly called the CHERI User’s Guide. It accompanies and is consistent
with the CHERI Instruction-Set Architecture Version 1.14.

The chapter on the Deimos demonstration operating system has been removed from the CHERI
User’s Guide to a separately distributed short report, Deimos - CHERI Demo Operating System
from Mars.

The document has been broken into two parts: the first on CHERI Clang/LLVM, and the second
on CheriBSD. New chapters on C-language support and compiler internals have been added on the
abstract model, C compiler support, the LLVM and MIPS backend implementation, and CHERI’s
ABIs. The CheriBSD chapter has been broken up into three chapters on building and using the
operating system, on kernel internals, and on userspace.

CHERI Clang/LLVM and CheriBSD build instructions have been updated to describe how to
build for both 256-bit and 128-bit versions of the CHERI ISA.

const is no longer enforced in hardware. A new qualifier, __input, is introduced as a
hardware-enforced non-disclaimable version of const.

CheriBSD’s support for tracing CCall/CReturn using ktrace is now described.

CheriBSD’s pure-capability CheriABI is now described: this is a process ABI in which all point-
ers passed between userspace and the kernel are as CHERI capabilities, rather than MIPS pointers.
This allows support for pure-capability ABI binaries.

1.12 - UCAM-CL-TR-877 This version of the CHERI Programmer’s Guide was made available as a
University of Cambridge Technical Report. It accompanies and is consistent with the CHERI
Instruction-Set Architecture Version 1.15 [13].

Clarify that std*.h shipped with CHERI Clang/LLVM cannot be used with the CheriBSD build.

Provide additional information on downloading the source code for FreeBSD/BERI, which is now
available via the FreeBSD Project subversion repository.

Extend the description of CHERI-specific kernel source files, including those relating to debug-
ging, exception delivery, signal handling, system-call handling, and CheriABI.

Further information on publication history, with cross references to papers and other technical
reports on BERI and CHERI, has been added.

11

1.6 Document Structure
This document is an introduction and user manual for the Capability Hardware Enhanced RISC Instruc-
tions (CHERI) system prototype, encompassing the CHERI software and its use. The Guide is split
into two parts: Part I describes the compiler and its implementation; Part II describes the OS and its
implementation.

Chapter 2 describes how to build and use CHERI Clang/LLVM.

Chapter 3 describes the abstract model by which C pointers are mapped into CHERI capabilities.

Chapter 4 describes CHERI Clang: implementation details for how CHERI-aware C code is processed,
built-in functions, and also compiler assistance for domain crossing.

Chapter 5 describes CHERI LLVM, including changes to the generic code, and those to the MIPS
backend.

Chapter 6 describes CHERI code generation and its use of ABIs, both in ‘hybrid’ mode, in which MIPS
pointers and CHERI capabilities coexist, and ‘pure-capability ABI’ (or ‘sandbox’) mode, in which only
CHERI capabilities are used in implementing C pointers.

Chapter 7 describes how to obtain the CheriBSD source code, build the CheriBSD userspace, and build
the CheriBSD kernel.

Chapter 8 describes the CheriBSD kernel, focusing on elements required to support in-address-space
memory protection, and the CheriBSD compartmentalization model.

Chapter 9 describes the CheriBSD userspace.

12

Part I

Compiler

13

Chapter 2

Building and Using CHERI Clang

This chapter describes CHERI-specific modifications to the Clang/LLVM compiler suite [4] and the
GNU assembler, as well as our extensions to the C programming language to support explicit capability
use.

2.1 Cross-Compiling for CHERI
For cross-compiling code that targets CHERI, we provide a modified LLVM back end and Clang front
end for [Objective-]C[++]. The back end can generate CHERI assembly and object code from LLVM’s
intermediate representation (IR). The front end generates the IR from C family languages and supports
some capability extensions to C.

For assembly language programming, we also provide a modified version of the GNU binutils (in-
cluding the GNU assembler gas) that has support for the capability instructions. This approach is
gradually being deprecated in favor of the LLVM integrated assembler, but is still used in a number of
places including the CHERI test suite and CheriBSD kernel build.

2.1.1 Building a Complete SDK
On a FreeBSD host system you can run cherilibs/trunk/tools/build_sdk.sh from the
base CHERI distribution. This should be run in a new directory, as it will check out and build both
CheriBSD and CHERI/LLVM.

After running this script, you should have subdirectories for the various projects that must be built,
and an sdk directory containing the SDK. The SDK includes all of the core FreeBSD libraries and
headers along with all of the tools required to cross build C/C++ programs for CHERI.

If you don’t have a FreeBSD host system, the following sections describes how to build individual
components of the toolchain.

2.1.2 Building the Assembler
To build the assembler, you will need to have Git installed. Check out the source code and build it like
this:

$ git clone git://github.com/CTSRD-CHERI/binutils.git
$ cd binutils
$./configure --target=mips64 --disable-werror
$ make

15

2.1.3 Building the Compiler
To build the compiler, you will need to have Git, CMake, and Ninja installed. Check out the code and
build like this:

$ git clone git://github.com/CTSRD-CHERI/llvm.git
$ cd llvm/tools
$ git clone git://github.com/CTSRD-CHERI/clang.git
$ cd ..
$ mkdir Build
$ cd Build
$ cmake -G Ninja -DCMAKE_BUILD_TYPE:STRING=Debug \

-DBUILD_SHARED_LIBS:BOOL=ON \
-DLLVM_DEFAULT_TARGET_TRIPLE:STRING=cheri-unknown-freebsd ..

$ ninja

Note: A recent version of CMake (at least 2.8.8) is required. If you are targeting a version of
CHERI with 128-bit capability registers then you will need to add -DLLVM_CHERI_IS_128=ON to
your cmake command line.

The std*.h and limits.h files included with Clang/LLVM are incompatible with those shipped
in the FreeBSD base; they cannot be used for a CheriBSD crossbuild. The SDK build will automatically
trim them, but manual builds of Clang/LLVM require those files to be deleted from your build tree:

$ rm lib/clang/3.*/include/std* lib/clang/3.*/include/limits.h

If these files are not deleted, the CheriBSD build will experience compiler errors relating to variable-
argument functions and type. These errors will hopefully be resolved in the future by upstreamed im-
provements to the integrated headers so that they are appropriate for use in FreeBSD.

By default, Ninja will select a number of processes to run in parallel on the build based on your
number of processors. You can increase or decrease this number with the -j flag. Building LLVM is
somewhat memory intensive, with compilation steps taking around 300MB of RAM and linking steps
taking 1-2GB, so you may wish to reduce this number if you have less than 1GB of RAM per core. If
you are on a 32-bit system, you may want to pass the following option to CMake to build a release build
with asserts, rather than a debug build:

-DLLVM_ENABLE_ASSERTIONS:BOOL:=ON

Attempting to Link a debug build of LLVM can run out of address space in the linker in a 32-bit
system.

Building Clang also requires a recent version of gcc. To compile Clang with itself (or to compile
the CTSRD-modified version of Clang with an unmodified clang) pass the following options to cmake:

-DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++

You can run the LLVM test suite, including CHERI-related tests, using:

$ ninja check

16

2.2 Using Clang
Once you have built LLVM, you (mostly) have a working cross-compiler. You can generate CHERI
assembly code from [Objective-]C[++] source code with this command:

$ clang -S {source file} -target cheri-unknown-freebsd \
-msoft-float

You can also generate native code directly:

$ clang --sysroot={cheribsd sysroot} {source file(s)} \
-B{cheribsd sdk directory} \
-target cheri-unknown-freebsd -msoft-float \
-o {output executable}

The -target flag specifies CHERI as the architecture and FreeBSD as the platform. If you have
built the CHERI SDK, you will have a cheri-unknown-freebsd-clang which you can use in-
stead of the clang and the -target flag.

The -sysroot and -B flags tell the compiler where to look for various things. The first specifies
where to search for headers (when compiling) and libraries (when linking). The second specifies where
to search for other parts of the toolchain, specifically the linker and (if you’re not using the integrated
assembler) the assembler.

The -msoft-float flag ensures that, if your version of CHERI has no FPU, we will emit calls to
emulated FPU functions rather than causing illegal instruction traps.

If you do a debug build of LLVM, then Clang will default to using the simple register allocator. To
see significantly better code, add the following CFLAGS:

-mllvm -regalloc=greedy -O3 -mllvm -enable-mips-delay-filler

These flags will enable a better register allocator and will attempt to replace the nops in delay slots
with instructions from before the branch – which also turns on the full set of LLVM optimizations.
Note that not all of these optimizations are well tested with CHERI; a lower optimization level may be
required for the generation of correct code.

2.3 Disassembling CHERI Binaries
Disassembly of some instructions is common during debugging. You can do this for individual instruc-
tions with the llvm-mc tool:

$ echo 0x48 0x02 0x08 0x02 | llvm-mc -disassemble - \
-triple=cheri-unknown-freebsd
.section TEXT,__text,regular,pure_instructions
CGetType $2, $c1

This tool expects a string of hex bytes and will write out the corresponding assembly. To disassemble
entire object code files, use the llvm-objdump tool:

$ llvm-objdump -disassemble -triple=cheri-unknown-freebsd \
{something.o}

17

2.4 Assembly Extensions
The LLVM integrated assembler (used by default by Clang, unless -no-integrated-as is passed)
provides some mnemonics for ease of assembly programming.

2.4.1 Capability Move
The cmove pseudo operation expands to a CIncOffset instruction with $zero as the increment size.
This is a shorthand for moving a value between capability registers. Its use is discouraged, as the
similarity of this instruction and cmov makes code difficult to read.

2.4.2 Capability-Relative Floating-Point Loads and Stores
The assembler provides clwc1, cldc1, cswc1, and csdc1 pseudoinstructions. These load and store
32- or 64-bit floating point values and are the same format as integer load and store operations. For
example, to load a single-precision floating point value from offset 32 inside C3 you would do:

 clwc1 $f2, $zero, 32($c2)

This will expand to:

 clw $1, $zero, 32($c2)
 mtc1 $1, $f2

A future revision of the CHERI ISA may add instructions for loading and storing floating point
values directly, at which point assembly code using this pseudo will generate a real instruction.

18

Chapter 3

Abstract model

To understand CHERI as a programmer target, it is important to understand the abstract machine that
CHERI exposes. This is intended to be compliant with C abstract machine, yet provide strong memory
safety guarantees that can serve as foundations for security properties.

3.1 Capabilities as pointers
CHERI provides memory capabilities to limit access to virtual memory. Software can only access the
subset of its virtual address space for which it has valid capabilities. Each load or store operation—
including instructions and instruction fetch—rely on implicit or capabilities. MIPS load and store oper-
ations are indirected via the ambient data capability ($c0), CHERI load and store operations take explicit
capability operands.

Capabilities grant some permissions on a range of memory, identified by a base and a length. The
CHERIv3 ISA extends this to incorporate an offset, intended to make it possible to use capabilities, rather
than integers, as pointers in C-like languages. You can perform arbitrary arithmetic on a capability’s
offset, but can only dereference it if it lies within the bounds and you have the relevant permissions.

3.2 Operations on capabilities
CHERI does not allow arbitrary privilege elevation. A piece of code can disclaim a capability, by simply
overwriting it with some data. It can also limit a capability by reducing its length, increasing its base
(which decreases its length by a corresponding amount), or reducing the set of permissions. All of these
operations provide a monotonic decrease in the access that a capability grants. If you have a capability
to an allocation, for example an array, then you can construct capabilities to a range within the array, or
capabilities that can only read or write (but not both) to the array, but you can not use it to construct a
capability that allows you to write past the end of the array.

The offset, as previously mentioned, is exempt from the monotonic property. It may be set to any
value, but any load and store that attempts to access outside of the permitted range will fail.

3.3 Integers in capabilities
One important property of C is the existence of types such as intptr_t, that can store either a pointer
or an integer and can be operated on as if they were integers. Integers can be stored in capabilities using
the offset: a null capability grants no rights, but can have an offset anywhere in the virtual address space.
The offset can therefore be used to store integer values.

19

The current implementation defines intmax_t to be long. This is allowed by the C specification,
as the requirement for intmax_t is that it must have a range equal to the largest integer, not a size. We
believe that this is likely to cause fewer problems in porting code, as most uses of intmax_t are for
storing integer, not pointer, values.

3.4 The different ABIs
Incremental adoption is one of the goals of CHERI. All existing unmodified binaries for the base archi-
tecture are expected to work. More importantly, it should be possible to run unmodified programs with
modified libraries and vice versa.

With this in mind, we support two ABIs, discussed more in chapter 6. One is a small extension to the
base ABI, permitting some pointers to be capabilities, but with the expectation that $c0 encompasses the
entire (or majority of the) address space and that the memory protection can be deliberately bypassed.
The second, the pure-capability ABI, is intended to be used when compatibility is not a concern and
uses capabilities for all pointer, as well as for the stack.

With care, it is possible to mix the use of both ABIs within a single program. The layout of various
data structures will be different, so the programmer is responsible for ensuring that data is correctly
marshaled at boundaries.

20

Chapter 4

C compiler support

The CHERI version of Clang, the C language front end for LLVM, has been modified to expose capa-
bilities at the C level.

4.1 Supported targets
When targeting CHERI, you must specify a target triple that contains cheri in the CPU part. The most
common triple to use is cheri-unknown-freebsd. This triple contains three portions, in the form
cpu-vendor-os. The vendor is irrelevant, only the CPU and OS matter for code generation.

There are two ways to pass the triple to Clang. The first is to add a -target flag, followed by
your triple, to your compile flags. The second is to create a symbolic link to clang of the form cheri-
unknown-freebsd-clang.

Note: build_sdk.sh

If you have the cross-compiler from the SDK, then it will automatically have its default target
triple (and sysroot) configured correctly. You can omit the -target option. You can see the
default target triple by passing -v to clang.

4.2 The pure-capability ABI
You can select the pure-capability ABI by passing -mabi=sandbox to clang. When compiling in this
mode, all pointers (including function pointers) will be represented as capabilities.

The compiler will infer the size of all stack allocations automatically and expects memory allocators
to set the size appropriately for their allocations.

C code in this model will not contain any non-capability load or store instructions. This means that
it is safe to clear the ambient data capability ($c0) when in this mode. It could be used as a general-
purpose capability register, but is not currently. In this mode, or one where the ambient data capability
is very limited in scope, this provides full memory safety.

4.3 Pointer qualifiers
In the compatible ABI, the __capability qualifier indicates that a pointer should be represented by
a memory capability. For example:

21

OPTION MEANING

push Save the current interpretation.
pop Restore a previously saved interpretation.

integer Pointers are represented by integers.
capability Pointers are represented by capabilities.
default Pointers are represented by whatever the default is for this target.

Table 4.1: The valid options for the pointer interpretation pragma.

void *a; // 64-bit integer interpreted as a pointer
__capability void *b; // 256-bit capability interpreted as a pointer

Implicit casts between capability and integer pointers are not permitted. This is an intentional design
decision, as such casts require careful thought to ensure that they are valid.

Clang exposes a feature-test macro that allows you to easily check whether you’re compiling for
a target that supports capabilities and to #define-way the __capability qualifier for other plat-
forms:

#if !__has_feature(capabilities) && !defined(__capability)
define __capability
#endif

4.4 Pragmas for generating capabilities
Often is it useful to define a block of code where pointers will be interpreted as either capa-
bilities or integers, rather than having to annotate them individually. This is possible with the
pointer_interpretation pragma. As with other C99 pragmas, this can be used either with
the #pragma or _Pragma() syntax.

The valid options for this pragma are listed in Table 4.1. Most uses of this pragma are likely to be
via macros that explicitly push and pop. For example, the following definitions provide a mechanism
for defining ranges:

#if __has_feature(pointer_interpretation)
define BEGIN_CAPABILITIES \

_Pragma("pointer_interpretation push") \
_Pragma("pointer_interpretation capability")

define END_CAPABILITIES \
_Pragma("pointer_interpretation pop")

define BEGIN_NO_CAPABILITIES \
_Pragma("pointer_interpretation push") \
_Pragma("pointer_interpretation integer")

END_NO_CAPABILITIES
_Pragma("pointer_interpretation pop")

#else
define BEGIN_CAPABILITIES

_Pragma("GCC error \"Compiler does not support capabilities
\"")

22

define END_CAPABILITIES
_Pragma("GCC error \"Compiler does not support capabilities

\"")
define BEGIN_NO_CAPABILITIES
define END_NO_CAPABILITIES
#endif

When compiled with a compiler that supports this pragma, they will have their expected
meanings (including correctly handling nesting). When compiled with another compiler, the
NO_CAPABILITIES versions will be silently ignored, but the CAPABILITIES versions will raise
an error.

This allows code like this:

BEGIN_CAPABILITIES
struct test
{

int *a,*b,*c;
} t;
END_CAPABILITIES

This is equivalent to explicitly annotating each field in the struct with the __capability
annotation.

4.5 Built-in functions
The C front end provides a number of built-in functions for manipulating capabilities, listed in Table 4.2.
These correspond directly to a single instruction, shown in the table. Most of these functions (those
with memcap in their name) are generic and should apply to any architecture that supports memory
capabilities. The remainder (those with cheri in their name) are specific to the current implementation.

4.6 Predefined macros
CHERI Clang provides a number of feature test macros, shown in Table 4.3. These are intended to be
used to check for specific functionality and conditionally compile code.

Additionally, the permission flags are provided as symbolic constants in the form of predefined
macros. These all start with __CHERI_CAP_PERMISSION_ followed by a suffix from Table 4.4. For
example, __CHERI_CAP_PERMISSION_PERMIT_SEAL__ is the permission bit for sealing.

4.7 __intcap_t

CHERI provides two builtin types, __intcap_t and __uintcap_t. These are expected to be
typedef’d to [u]intcap_t in the compatible ABI and [u]intptr_t in the pure-capability
ABI. These types are the same sizes as capabilities (i.e. sizeof(__intcap_t)== sizeof(
__capability void*)).

As with intptr_t in conventional C code, the goal for these types is to support any integer value
or any pointer value, and to allow arbitrary arithmetic. The C standard requires that, if intptr_t
exists, it should be possible to store a pointer in it and recover the same pointer. Most C code expects to
be able to also perform arithmetic on the pointer value.

23

CLANG BUILTIN CHERI INSTRUCTION

__builtin_memcap_length_set CSetLen

__builtin_memcap_length_get CGetLen

__builtin_memcap_bounds_set CSetBounds

__builtin_memcap_base_increment CIncBase

__builtin_memcap_base_get CGetBase

__builtin_memcap_perms_and CAndPerm

__builtin_memcap_perms_get CGetPerm

__builtin_memcap_type_set CSetType

__builtin_memcap_type_get CGetType

__builtin_memcap_tag_get CGetTag

__builtin_memcap_sealed_get CGetSealed

__builtin_memcap_tag_clear CClearTag

__builtin_memcap_seal CSeal

__builtin_memcap_unseal CUnseal

__builtin_memcap_perms_check CCheckPerm

__builtin_memcap_type_check CCheckType

__builtin_memcap_offset_increment CIncOffset

__builtin_memcap_offset_set CSetOffset

__builtin_memcap_offset_get CGetOffset

__builtin_memcap_program_counter_get CGetPCC

__builtin_memcap_global_data_get CMove %0, $c0

__builtin_memcap_stack_get CMove %0, $c11

__builtin_cheri_cause.get CGetCause

__builtin_cheri_cause.set CSetCause

__builtin_cheri_invoke_data_cap_get CMove %0, $c26

__builtin_cheri_kernel_cap1_get CMove %0, $c27

__builtin_cheri_kernel_cap1_get CMove %0, $c28

__builtin_cheri_kernel_code_cap_get CMove %0, $c29

__builtin_cheri_kernel_data_cap_get CMove %0, $c30

__builtin_cheri_exception_program_counter_cap_get CMove %0, $c31

Table 4.2: C built-in functions provided for CHERI.

24

MACRO VALUE MEANING

_MIPS_ARCH "cheri" The variant of the MIPS ar-
chitecture in use.

_MIPS_ARCH_CHERI 1 CHERI is the target (MIPS-
specific).

__CHERI__ 1 CHERI is the target (may
be used for non-MIPS imple-
mentations).

_MIPS_SZCAP 256 The size of a capability (in
bits).

__CHERI_SANDBOX__ 1 Set only if targeting the pure-
capability ABI.

Table 4.3: Feature test predefined macros supported by CHERI Clang

MACRO SUFFIX VALUE MEANING

_GLOBAL__ 1 Global “permission”
flag value.

_PERMIT_EXECUTE__ 2 Execute permission flag
value.

_PERMIT_LOAD__ 4 Load (data) permission
flag value.

_PERMIT_STORE__ 8 Store (data) permission
flag value.

_PERMIT_LOAD_CAPABILITY__ 16 Load-capability per-
mission flag value.

_PERMIT_STORE_CAPABILITY__ 32 Store-capability per-
mission flag value.

_PERMIT_STORE_LOCAL__ 64 Store ephemeral per-
mission flag value.

_PERMIT_SEAL__ 128 Seal permission flag
value.

_ACCESS_EPCC__ 1024 Access $epcc permis-
sion flag value.

_ACCESS_KCC__ 4096 Access $kcc permis-
sion flag value.

_ACCESS_KDC__ 2048 Access $kdc permis-
sion flag value.

_ACCESS_KR1C__ 8192 Access $kr1c permis-
sion flag value.

_ACCESS_KR2C__ 16384 Access $kr2c permis-
sion flag value.

Table 4.4: Suffixes of permission value predefined macros supported by CHERI Clang.
__CHERI_CAP_PERMISSION_ is prefixed to all of these.

25

When an integer value is cast to an __intcap_t, the compiler will set that integer as the offset
of a canonical null capability. Any arithmetic on an __intcap_t value is performed by extracting its
offset, manipulating it, and then setting it. This ensures that integer arithmetic on __intcap_t values
derived from integers will work precisely as expected. Arithmetic on values derived from pointers
(capabilities) is a little bit more complex. Masking to access the unused low and high bits should still
work as expected, as should addition. Multiplication and division, however, will not.

Comparisons between __intcap_t values use special pointer comparison instructions. These
have the semantics that any untagged capability (including those derived from the null capability) will
compare before those with a valid tag. Within these two regions, capabilities are compared based on their
absolute virtual addresses (i.e. base + offset). Comparisons between signed and unsigned __intcap_t
values will use the signed and unsigned variants of the compare instructions.

Note: Pointer comparison and garbage collection
The C specification makes comparisons between pointers to different objects undefined. The
CHERI C compiler aims to ensure that such comparison is stable and has the same result as
pointer comparison with non-capability pointers.

The fact that the CHERI model makes it possible to differentiate pointers from integers
(even in the case of __intcap_t) means that it is possible to implement a copying garbage
collector for CHERI C. The compiler aims to ensure that virtual addresses do not leak into
integer registers unless the programmer explicitly requests them to (for example, casting a
capability to an int or explicitly accessing the base). This means that, as long as care is taken,
memory referenced by capabilities but outside of the global data capability range can be safely
collected, unless the code relies on undefined behavior or explicitly attempts to subvert the
garbage collector.

4.8 Input and output
The CHERI capability model supports pointers with restricted rights. An early version of CHERI Clang
used this to enforce const in hardware. This proved problematic, for example in idioms such as
strchr:

char *strchr(const char *s, int c);

This function returns a non-const pointer derived from a const pointer. The invariant that this
intends to document is that the strchr function will not modify the buffer s. In the capability model,
it is impossible to derive a writable capability from a read-only capability, which broke any caller of this
function that expected the returned pointer to be writable.

To address this, CHERI Clang provides an __input qualifier, which is similar to const but en-
forced in hardware. Capabilities can be implicitly cast to __input-qualified versions, including as
function parameters, and the compiler will insert a CAndPerms instruction to disclaim write permis-
sions.

A corresponding __output qualifier has similar behavior, creating a write-only capability. For
example, consider the following simple snippet:

int in(__input __capability int *x);
int out(__output __capability int *x);

26

void inout(__capability int *x)
{

in(x);
out(x);

}

The inout function will compile to the following LLVM IR:

; Function Attrs: nounwind
define void @inout(i32 addrspace(200)* %x) #0 {
entry:

%0 = bitcast i32 addrspace(200)* %x to i8 addrspace(200)*
%1 = tail call i8 addrspace(200)* @llvm.mips.cap.perms.and(i8

addrspace(200)* %0, i64 65495)
%2 = bitcast i8 addrspace(200)* %1 to i32 addrspace(200)*
%call = tail call i32 @in(i32 addrspace(200)* %2) #3
%3 = tail call i8 addrspace(200)* @llvm.mips.cap.perms.and(i8

addrspace(200)* %0, i64 65515)
%4 = bitcast i8 addrspace(200)* %3 to i32 addrspace(200)*
%call1 = tail call i32 @out(i32 addrspace(200)* %4) #3
ret void

}

The two intrinsic calls construct two capabilities derived from the original argument. The first
removes the store and store-capability permissions. The second removes the load and load-capability
permissions. This means that the in function can not use its argument to write memory and the out
function can not use its argument to read memory.

4.9 Inline assembly
Clang supports GNU-style inline assembly. When targeting CHERI, "C" can be used as a register
constraint indicating that a particular operand is a capability. For example, to access the value in $c0,
you might write:

__capability void *c0;
__asm__ __volatile__ ("cmove %0, $c0"

: "+C"(c0) /* c0 is a capability output operand */
: /* No input operands */
: /* No clobbers */
);

Note that the + prefix is required to indicate that this is an output register, for input operands "C" is
correct.

4.10 memcap.h

CHERI Clang includes a header, memcap.h, which can be included by code targeting any architecture
and exposes architecture-neutral definitions of types and functions for memory capabilities.

The new types and qualifiers provided by the compiler all use identifiers that start with two under-
scores, because this part of the namespace is reserved for the language implementation and so should not
conflict with any user code. The memcap.h header provides more human-friendly versions of these,
including intcap_t and uintcap_t types, and the capability, input and output qualifiers.

27

On architectures that don’t support capabilities, the two types will be equivalent to intptr_t and
uintptr_t and the qualifiers will be ignored.

The header also provides versions of the __builtin_memcap functions, without the
__builtin_ prefix. The versions of these that are exposed when compiling without capability support
are no-ops for the set variants and define maximum permissions and bounds for the get variants.

Only the functions that are expected to be generic across all implementations of the CHERI model
(as opposed to the MIPS-based concrete implementation) are exposed by this header.

4.11 Compiler assistance for cross-domain calls
It is important to avoid leaking rights (and other information) when calling between security contexts.
CHERI implements cross-domain calls via a special instruction (ccall) that traps to a privileged han-
dler (currently in the kernel) to perform the domain transition. The handler is responsible for saving and
zeroing all callee-save registers and clearing all caller-save registers. On return, the same code in the
handler will restore all callee-save registers and (again) zero caller-save registers.

The handler does not know precisely what the arguments are for any function that is involved in
a cross-domain call and so can not clear the unused argument registers on call, nor the unused return
registers on return.

On the other side of the cross-domain call, the code must determine which method to invoke. This
is done by means of a method number, which is passed in a register that is normally unused for calls.

If a function is annotated with __attribute__((cheri_ccall)) then the front end will
replace calls to it with specially crafted calls to cheriinvoke, with the method number (identified
by a global variable that is initialised by the sandbox loader) in the correct register. This annotation
provides two declarations of the function, one with a suffix (specified by the cheri_method_suffix
attribute) that takes an explicit CHERI class argument and one that automatically sets the class (code and
data capability) arguments from a global variable specified by the cheri_method_class attribute.

Functions with the cheri_ccallee attribute will use the ccall calling convention, and so the
compiler will zero any return registers. This is intended to allow functions to be declared that are usable
both inside and between compartments.

Functions with the ccall calling convention have two extra capability argument registers, $c1 and
$c2, which contain the code and data capabilities. They also have an extra integer argument register
($v0), which contains the method number. These are not exposed to functions marked as using the
ccallee calling convention, which accept the normal calling convention’s argument registers.

Consider the following simple program:

__capability void *data;
__attribute__((cheri_ccallee))
__capability void *cgetdata(void)
{

return data;
}

__attribute__((cheri_ccallee))
int cgetnumber(void)
{

return 42;
}

This contains two simple functions that are expected to be invoked as part of a domain transition.
The first returns a capability from inside its data capability, the second returns a constant. In the first,

28

the return value is a capability and so will be returned in capability register $c3. The two integer return
registers ($2 and $3, sometimes called $v0 and $v1) are unused. The compiler will generate this code
for the return:

clc $c3, $zero, 0($c2)
move $2, $zero
move $3, $zero

The return value is loaded into $c3. The two integer return values are zeroed. In the second function,
one of the integer return registers is used, but the capability registers are not. The compiler generates
this code:

cfromptr $c3, $c0, $zero
addiu $2, $zero, 42
move $3, $zero

In this case, the first integer return register is set to 42, but the other return registers are cleared.

29

30

Chapter 5

LLVM implementation

The changes in LLVM can be roughly split into two components: those specific to the MIPS back end
and those in generic code. The MIPS back end changes are specific to the current CHERI implementa-
tion. The remainder are generic changes to support memory capabilities in the middle of the optimization
pipeline and in the target-independent code generator.

5.1 Address space 200
We reserve address space 200 to be the address space used for capabilities. This is below 256 and so
is a target-agnostic address space. We assume that other architectures providing support for memory
capabilities would use the same address space.

5.2 Data layout
To support the pure-capability ABI, the data layout string is modified to define the address space for
alloca instructions. It’s assumed that, within a compilation unit, every alloca returns a pointer in
the same address space. By default, this is address space 0, but when targeting the pure-capability ABI
it is set to 200.

In the MIPS back end, a pass will replace each of these allocas (and all of their uses) with one in
address space 0, followed by calls to two intrinsics. The first intrinsic derives a $c11-relative capability
from the integer value. The second sets its length to the size of the alloca.

This allows the normal MIPS stack pointer to be used as an offset within $c11.
A lot of optimizations, in particular scalar evolution and the SLP vectorizer, assume that the size of

a pointer is the size of an integer that can express its range. As a result, they will attempt to create i256
operands to various pointer arithmetic operations. To avoid this, the DataLayout class now provides
a few variants of getPointerBaseSize() methods, which get the size of the base of a fat pointer
or capability. For non-capability pointer types, these simply return the size.

5.3 Alignment of types
Capabilities are always naturally aligned. This is a requirement of the hardware (there is one tag bit per
capability-sized line of memory). The back end will assume that all pointers to capabilities are correctly
aligned and will emit code that will trap at run time if not.

Capability-relative loads and stores have no equivalent of the MIPS lwl and lwr instructions for
unaligned loads and stores. If capability-relative loads and stores have to be aligned, then this results

31

in a very inefficient sequence of loads and shifts. This is unfortunate, because in most cases loads and
stores are naturally aligned, but the front end and mid-level optimizers lose the alignment information.
This resulted in the back end emitting the inefficient sequence for all loads and stores.

The MIPS back end now assumes that CHERI is able to support unaligned loads and stores of
every type. A sufficient number of loads and stores are correctly aligned (but have lost the alignment
information) that this is a speed win. On recent versions of CHERI1, unaligned loads and stores within
a cache line are also supported in hardware, so the slow path (trapping to the OS) is not required.

5.4 SelectionDAG types
In LLVM, one of the early parts of the target-independent code generator replaces all pointers with an
integer of the correct size. On CHERI, this would be an i256, which is not a valid type for the target
and would cause other problems if the definition allowed the rest of the code generator to assume that
256-bit integers were supported.

To avoid this, we add an MVT::iFATPTR machine value type to the code generator. This can
be used for any non-integer pointer and can be pattern matched by any of the tablegen-generated
matching code.

We also add ISD::INTTOPTR and ISD::PTRTOINT SelectionDAG nodes. These represent
conversions between MVT::iFATPTR and integer types and are generated from any address space cast
instructions between address spaces 0 and 200, as well as inttoptr and ptrtoint IR instructions.
In the MIPS back end, these expand to CToPtr and CFromPtr instructions.

The conventional way of expressing pointer arithmetic in the SelectionDAG is via normal arithmetic
nodes. This works because the MVT::iPTR type is lowered to an integer type (typically MVT::i32 or
MVT::i64) in the legalization phase. The ADD SelectionDAG node has the invariant that the operands
must be the same type. This does not work for pointer addition with fat pointers, because one operand
is the pointer and the other is the integer value that is being added to the pointer, which will typically be
MVT::iFATPTR and MVT::i64 respectively for CHERI.

To address this, we add another new SelectionDAG node: ISD::PTRADD. This is naÃŕvely low-
ered to CIncOffset in the MIPS back end, but may later be folded to use a complex addressing
mode.

5.5 LLVM IR Intrinsics
The MIPS back end exposes a number of intrinsics in LLVM IR, listed in Table 5.1. Some of these,
shown above the line in the table, may later be replaced by generic memory capability intrinsics. The
remainder are specific to the MIPS implementation of the CHERI modell.

Most intrinsics map directly to a specific instruction. A small number fix some of the operands. For
example, all of the accessors for the special registers will move the value of a specific register into an
SSA register, which will then be replaced with a real register (whose number is not under programmer
control) during register allocation.

The llvm.mips.stack.to.cap intrinsic is intended for internal use only. As mentioned in
section 5.2, it is used by the MIPS target when converting the IR from a form where alloca instructions
are in address space 200, to one where they are in address space 0. All alloca instructions are replaced
with a short sequence of an alloca followed by a call to this intrinsic and then a call to the llvm.
mips.cap.length.set intrinsic. All uses of the original alloca are then replaced by this value,
which is a $c11-derived capability of a defined length.

32

LLVM INTRINSIC CHERI INSTRUCTION

llvm.mips.cap.length.set CSetLen

llvm.mips.cap.length.get CGetLen

llvm.mips.cap.bounds.set CSetBounds

llvm.mips.cap.base.increment CIncBase

llvm.mips.cap.base.get CGetBase

llvm.mips.cap.perms.and CAndPerm

llvm.mips.cap.perms.get CGetPerm

llvm.mips.cap.type.set CSetType

llvm.mips.cap.type.get CGetType

llvm.mips.cap.tag.get CGetTag

llvm.mips.cap.sealed.get CGetSealed

llvm.mips.cap.tag.clear CClearTag

llvm.mips.cap.seal CSeal

llvm.mips.cap.unseal CUnseal

llvm.mips.cap.perms.check CCheckPerm

llvm.mips.cap.type.check CCheckType

llvm.mips.cap.offset.increment CIncOffset

llvm.mips.cap.offset.set CSetOffset

llvm.mips.cap.offset.get CGetOffset

llvm.mips.stack.cap.get CMove %0, $c11

llvm.mips.cap.cause.get CGetCause

llvm.mips.cap.cause.set CSetCause

llvm.mips.c0.get CMove %0, $v0

llvm.mips.pcc.get CGetPCC

llvm.mips.idc.get CMove %0, $c26

llvm.mips.kr1c.get CMove %0, $c27

llvm.mips.kr2c.get CMove %0, $c28

llvm.mips.kcc.get CMove %0, $c29

llvm.mips.kdc.get CMove %0, $c30

llvm.mips.epcc.get CMove %0, $c31

llvm.mips.stack.to.cap CFromPtr $c11, %0

Table 5.1: LLVM intrinsics provided for CHERI.

33

34

Chapter 6

The CHERI ABIs

The CHERI compiler supports two ABIs, an extended version of the MIPS n64 ABI and the pure-
capability ABI where every pointer is a capability. The pure-capability ABI is intended to evolve to a
point where $c0 is never used. Currently, $c0 is used for globals, but not for any other data accesses.

6.1 Register usage
The compiler’s use of capability registers is summarized in Table 6.1. Registers $c16–$c24 are preserved
across calls, as is $c0, which is never modified by the compiler. In the pure-capability ABI, so is $c11
(the stack capability).

6.1.1 The pure-capability ABI
The pure-capability ABI uses $c11 as a stack capability. The $sp and $fp registers contain offsets in the
stack capability. It would make sense to replace $sp with the offset in $c11. This would simplify the
addressing modes for the stack and make a lot of spills cheaper in the pure-capability ABI.

The pure-capability ABI uses the capability mechanism to protect the return address. In the MIPS
ABI, function calls are implemented as jalr $t9, $ra. In the pure-capability ABI, they are cjalr
$c12, $c17. This has two effects. The first is that $t9 can no longer be used as a cheap way of

getting the program counter for position-independent code. Instead, if this value is needed, the compiler
will emit CGetOffset $t9,$c12, setting $t9 to the $pcc-relative address of the program counter
on function entry.

The second effect is that the return can be emitted as cjr $c17.If $c17 is spilled to the stack, then
it is protected by its tag bit. If it is overwritten by anything other than an executable capability, then the
cjr instruction will trap.

6.2 Calling conventions
When targeting the n64 ABI, the only changes to the calling convention are to support capability argu-
ments. Capability arguments are passed in registers $c3 to $c10, with $c3 also being used for capability
return values.

The normal rules for composite types apply: the portions that will fit within a register are passed in
registers and the remainder is passed on the stack.

35

REGISTER COMPILER USAGE

$v0 Contains the method number for cross-domain calls.
$c0 Used implicitly for all non-capability memory accesses.
$c1–$c16 Used for arguments in the “fast” calling convention.
$c1–$c2 Code and data capability arguments with the “ccall” calling convention.
$c3 Capability return value.
$c3–$c10 Capability arguments (caller-save).
$c11 Stack capability (pure-capability ABI).
$c12 Used with cjalr as the destination register (pure-capability ABI).
$c13 Capability to on-stack arguments (variadic functions only).
$c11–$c15 Temporary (caller-save) registers.
$c17 Capability link register used with cjalr (pure-capability ABI).
$c16–$c24 Saved (callee-save) registers.
$c25–$c31 Not used by the compiler.

Table 6.1: Capability register usage.

6.2.1 Variadic calls
The n64 ABI requires that all arguments to variadic functions are passed either on the stack or in 8
integer registers. When a va_list is constructed, the 8 integer values are written out. This means that
capability arguments in variadic functions are very difficult to support and are currently not expected
to work. To fix them, we will have to ensure that all arguments after the first capability argument are
passed on the stack and that the first capability argument has a mechanism for knowing whether it is in
the first 64 bytes of the va_list (and, if so, incrementing the pointer until it’s at the end).

In the pure-capability ABI, all variadic arguments are passed on the stack, with their natural align-
ment (non-variadic arguments to variadic functions are passed in registers or on the stack as the normal
calling convention would dictate).

The $c13 register holds a capability to the on-stack arguments. The va_start function copies the
value that was stored in $c13 on entry to the function.

The va_list is a capability to the (on-stack) variadic arguments and va_arg calls ensure correct
alignment, load from the capability, and increment its offset past the value. The alignment requirements
can result in large gaps in the variadic argument list if integer and capability arguments are interleaved.

Note: General usage
Being able to find the range of on-stack arguments can be useful in the general case, so it may
be a good idea to extend the non-variadic ABI to store the range of on-stack arguments in a
capability in the same way. This would require that all functions that do not pass values on the
stack zero $c13, but that is a relatively small overhead.

6.3 Cross-domain calls: “ccall”
The chericcallcc calling convention uses registers $c1 and $c2 for the first two capability argu-
ments and $v0 for the method number. The front end will lower structs that fit in registers to a

36

sequence of scalars, so this is typically generated from a two-capability struct. The remaining ar-
guments are in the same place as the normal calling convention, allowing a simple jump to tail call
functions that do not care about these arguments.

The back end tracks the argument registers that are used by callers of functions with this convention
and the return registers that are used by the callee. At each call site, it will zero unused argument
registers. In the callee, it will zero unused return registers.

Note: Soft float
The compiler currently assumes that the soft-float ABI is always used for calls into sandboxes
and so does not zero any floating point registers. The CHERIBSD trampoline code in the kernel
also makes this assumption, but it will need revisiting once floating point is enabled.

The attributes for generating this code are described in section 4.11. The compiler assumes that the
runtime environment (library or kernel code) is responsible for preserving or zeroing all non-argument
registers across security domain transitions. The code to do this is the same for all functions and so
having only a single instance provides better cache utilization.

The compiler generates two special sections containing metadata about cross-domain calls.
__cheri_sandbox_required_methods contains metadata about methods that are required by
the binary. __cheri_sandbox_provided_methods contains metadata about methods that are
provided by this binary. These are used by the libcheri runtime, to make method numbers in the
caller and callee of cross-domain calls match.

For each method that is defined in the binary, the __cheri_sandbox_provided_methods
section will contain an instance of the following structure:

struct sandbox_provided_method
{

int64_t flags;
char *class;
char *method;
void *method_ptr;

};

The flags field is currently always 0 and is reserved to permit future modifications to this structure
without breaking compatibility. The class field points to the name of the class for which the method
is provided. The method field points to the name of the method. The method_ptr field is a $pcc-
relative address of the method.

Similarly, for each required method the compiler will emit a structure of the following form in the
__cheri_sandbox_required_methods section:

struct sandbox_required_method
{

int64_t flags;
char *class;
char *method;
int64_t *method_number_var;
int64_t method_number;

};

Multiple compilation units in the same binary may require the same method, so each of these struc-
tures is emitted as a single comdat, to allow merging. Older versions of the cross-domain call ABI put

37

the method numbers in a separate section and required the runtime library to walk the ELF symbol table.
The current structure is a hybrid, with the method_number_var field containing the address of that
global, allowing code to be compiled and used with old and new versions of the runtime library.

The flags field is used by the runtime to indicate that a method has been resolved. It will also be
used in a future version to indicate that the method_number_var field has been omitted and that the
generated code expects the method_number field to contain the authoritative version of the method
number. The top 32 bits of the flags field are reserved for use by the runtime, the low 32 bits for use
by the compiler.

The class and method fields contain the names of the class and method, respectively.

6.4 Global initialization
Capabilities in globals require special handling. Capabilities can not be statically defined in the binary
as other data, because doing so will not set the tag. Similarly, existing relocation types are not sufficient
to describe a capability, which has a base, bounds, and permissions in addition to the location described
by conventional pointers.

Note: Dynamic initialization
The initial implementation in clang simply emitted C++-style dynamic initialization code for all
globals that contained non-null pointer values in the constant initializer. This is still the default,
though this will change soon and can be disabled with the -Xclang -cheri-linker flag.

The LLVM back end will emit a special section in the ELF binary for these initializers. This section
contains one entry for each capability that must be initialized at program launch. For example, consider
the following program fragment:

extern int a[5];
int *b[] = {&a[2], &a[1], a};

The resulting binary will contain a __cap_relocs section with three instances of the following
structure:

struct capreloc
{

void *__capability capability_location;
void *object;
uint64_t offset;
uint64_t size;
uint64_t permissions;

};

The capability_location field contains the (relative) address of the capability that must be
initialised at run time. The object field contains an address (and associated relocations) of the object
that the capability refers to. The offset field contains the offset within this object. The size field
contains the size of the underlying object. The permissions field contains the permissions that the
capability should have and reserves space for other flags.

For the above example, the compiler will emit three structures, with the following values:

{ &b[0], &a, 8, 0, 0},
{ &b[1], &a, 4, 0, 0},
{ &b[2], &a, 0, 0, 0}

38

The compiler does not know the size of the object and so will set the size to 0. After linking, the
ELF file will contain the size of the symbol. A capability-aware linker would then fill in the size field.
In the absence of such a linker, the fixcapsize tool will set the size.

Currently, the permissions field is always 0. Future versions will indicate in this field whether the
capability is relative to $gdc or $pcc and what permissions it should have.

You can check wither this has worked by using the -C flag to llvm-objdump :

$ llvm-objdump -C a.out

a.out: file format ELF64-mips

CAPABILITY RELOCATION RECORDS:
0x000000000000a7a0 Base: a (0x000000000000a700) Offset: 0000000000000008
Length: 0000000000000020
0x000000000000a7c0 Base: a (0x000000000000a700) Offset: 0000000000000004
Length: 0000000000000020
0x000000000000a7e0 Base: a (0x000000000000a700) Offset: 0000000000000000
Length: 0000000000000020

There are currently some significant limitations:

• We should have a flag to indicate whether this is a code (executable) or data capability, to indicate
whether it should be derived from $pcc or $gdc.

• We have no way of enforcing permissions (for example, the __output or __input qualifier
on pointers).

• Dynamically linked binaries will need the run-time linker to provide the symbol sizes.

6.5 Return address protection
RISC architectures typically provide a jump instruction that puts the return address in another register
(e.g. jalr on MIPS, bl[x] on ARM). If the called function calls another function, it must spill the
return address to the stack, where it can be reloaded later. This happens automatically on x86, where the
call and ret instructions store the return address on the stack and read it from the stack, respectively.

If a buffer overflow allows the return address to be overwritten, then an attacker can control exactly
where execution will continue after the return.

In the pure-capability ABI, this kind of attack is very difficult. Calls use the cjalr instruction,
so the return address is a $pcc-relative capability. If this is overwritten with something that is not a
capability, then the return will trigger a tag violation. If this is overwritten by a non-executable capability,
then the return will trigger a permissions violation. For a successful exploit, the attacker would have to
find an executable capability (e.g. a function pointer or a previous return address) that the program could
be tricked into writing over the return address.

We would like to be able to provide the same benefits to the existing ABI. We achieve this by keeping
the call sequence the same, but modifying the return sequence. In all non-leaf functions, when we spill
the return address to the stack we also spill a return capability: $pcc with its offset set to the return
address. This can then be used with cjr to return. Note that we still spill the return address, even
though it is not used, because other tools (debugging tools and so on) sometimes rely on the position of
the return address on the stack.

39

40

Part II

Operating System

41

Chapter 7

Building and Using CheriBSD

FreeBSD/BERI is a port of the open-source FreeBSD operating system [5] to the Bluespec Extensible
RISC implementation (BERI), now available via the FreeBSD Project. CheriBSD extends FreeBS-
D/BERI to implement memory protection and software compartmentalization features supported by the
CHERI ISA. General crossbuild and use instructions for FreeBSD/BERI may be found in the BERI Soft-
ware Reference. Procedures for building and using FreeBSD/BERI should entirely apply to CheriBSD,
except as documented in this chapter.

7.1 Obtaining FreeBSD/BERI and CheriBSD Source Code
FreeBSD/BERI has been merged to FreeBSD subversion repository and may be obtained from:

https://svn.freebsd.org/base/head

Development takes place on the master branch, which will eventually become FreeBSD 11.x.
Source code for CheriBSD is maintained on GitHub in the following repository:

https://github.com/CTSRD-CHERI/cheribsd

The CheriBSD development tree is branched from the FreeBSD GitHub repository at:

https://github.com/freebsd/freebsd

CheriBSD may be retrieved from GitHub as follows:

$ git clone https://github.com/CTSRD-CHERI/cheribsd

7.2 Building CheriBSD
CheriBSD follows the same build instructions as those found in the BERI Software Reference chapter on
building FreeBSD/BERI, substituting source code from the above Git repository, as well as pathnames
and kernel names in build commands.

7.2.1 CheriBSD Build Process
In order to build programs and libraries with support for CHERI as part of CheriBSD, support must
be enabled with the WITH_CHERI128 or WITH_CHERI256 make options. The CHERI_CC must
generally be set to the path to our CHERI-aware Clang/LLVM extensions (described in Chapter 2). If an
up-to-date version of the devel/llvm-cheri package is installed then CHERI_CC may be omitted.

43

https://svn.freebsd.org/base/head
https://github.com/CTSRD-CHERI/cheribsd
https://github.com/freebsd/freebsd

Otherwise, the following should be added to the make buildworld and make installworld
commands (for build with 256-bit capabilities):

-DWITH_CHERI256 \
CHERI_CC=/path/to/cheri-unknown-freebsd-clang

Typically, this argument will be a pointer to the Build/bin directory in your CHERI Clang/LLVM
build, or bin in the CHERI SDK.

Some utility and demonstration software is stored in the ctsrd and tools/tools/atsectl
directories. They can be built with the world by adding the following to the make buildworld
command line:

LOCAL_DIRS="ctsrd tools/tools/atsectl" \
LOCAL_LIB_DIRS=ctsrd/lib \
LOCAL_MTREE=ctsrd/ctsrd.mtree

You will similarly need to include the following lines for the make installworld target:

LOCAL_DIRS="ctsrd tools/tools/atsectl" \
LOCAL_MTREE=ctsrd/ctsrd.mtree

To simplify the common use case, the top-level Makefile of CheriBSD accepts the CHERI make
option which may be set to 128 or 256 and sets all values described above except for CHERI_CC. For
example:

make CHERI=256 CHERI_CC=/path/to/cheri-clang -j16 buildworld

7.3 Building the CheriBSD Kernel
Support for the capability coprocessor is an optionally compiled kernel extension enabled using
cpu CPU_CHERI. Ensure that you have replaced a BERI kernel configuration-file name with a similar
CHERI name to ensure that nocpu CPU_BERI and cpu CPU_CHERI lines have been used. An
additional kernel option CPU_CHERI128 is required to request compilation for 128-bit capabilities.
Table 7.1 lists several sample 256-bit kernel configuration files for CHERI-enabled DE4 and simulator
kernels. Table 7.2 lists similar configurations but compiled for 128-bit capabilities; these may be used
only with a CheriBSD userspace compiled with 128-bit capability support.

A typical build command line for the CheriBSD DE4 kernel is:

make CHERI=256 KERNCONF=CHERI_DE4_USBROOT -j16 buildkernel

As with conventional FreeBSD/BERI kernels, additional steps are required to construct and config-
ure a memory root filesystem image in CheriBSD kernels; see the BERI Software Reference for further
information.

44

Filename Description

CHERI_DE4_MDROOT CheriBSD kernel configuration to use a memory root
filesystem on the Terasic DE4; 256-bit capabilities

CHERI_DE4_NFSROOT CheriBSD kernel configuration to use an NFS-based root
filesystem on the Terasic DE4; 256-bit capabilities

CHERI_DE4_SDROOT CheriBSD kernel configuration to use an SD Card root
filesystem on the Terasic DE4; 256-bit capabilities

CHERI_DE4_USBROOT CheriBSD kernel configuration to use a USB root filesys-
tem on the Terasic DE4; 256-bit capabilities

CHERI_SIM_MDROOT CheriBSD kernel configuration to use a memory root
filesystem while in simulation; 256-bit capabilities

CHERI_SIM_SDROOT CheriBSD kernel configuration to use a simulated SD Card
root filesystem; 256-bit capabilities

Table 7.1: 256-bit CheriBSD files in src/sys/mips/conf.

Filename Description

CHERI128_DE4_MDROOT CheriBSD kernel configuration to use a memory root
filesystem on the Terasic DE4; 128-bit capabilities

CHERI128_DE4_NFSROOT CheriBSD kernel configuration to use an NFS-based root
filesystem on the Terasic DE4; 128-bit capabilities

CHERI128_DE4_SDROOT CheriBSD kernel configuration to use an SD Card root
filesystem on the Terasic DE4; 128-bit capabilities

CHERI128_DE4_USBROOT CheriBSD kernel configuration to use a USB root filesys-
tem on the Terasic DE4; 128-bit capabilities

CHERI_SIM_MDROOT CheriBSD kernel configuration to use a memory root
filesystem while in simulation; 128-bit capabilities

Table 7.2: 128-bit CheriBSD files in src/sys/mips/conf.

45

46

Chapter 8

CheriBSD Kernel

The FreeBSD/BERI kernel has been modified in the following ways to support CHERI’s protection
features:

• Platform boot code has been extended to enable the capability coprocessor.

• The per-thread PCB context structure has been extended to hold a saved capability register file,
as well as a per-thread trusted stack that tracks object-capability invocations to provide a reliable
return path.

• Kernel context-switching code has been extended to save and restore the capability register file
for userspace.

• The kernel debugger has been extended to be able to print CHERI-related information such as the
contents of the capability register file.

• The virtual-memory subsystem has been extended to support preserving memory tags for anony-
mous (swap-backed) memory objects, for which memory mappings are permitted to set the
CHERI TLB bits enabling tagged loads and stores. Other memory objects to not (yet) support
tagged memory, and TLB bits will not be set – for example, for memory mapped files whose
underlying filesystems will be unable to preserve tags.

• New kernel memory-copying routines that can preserve tags on memory have been added. These
are used selectively (e.g., in copying register files and in explicitly tag-preserving copies in the
VM system), but not for the majority of kernel memory copies. For example, memory copies
used in message-oriented IPC, such as those performed to copy data to and from local domain
socket buffers, will not preserve tags, as data messages are not intended to carry pointers.

• The kernel’s handling of user exceptions has been extended to provide additional capability-
related debugging information when userspace protection faults occur.

• The kernel rejects attempts to perform system calls from user threads whose PCC (program-
counter capability) register does not have the CHERI_PERM_SYSCALL user-defined permission
bit, preventing sandboxes from directly invoking system services. They must instead invoke a
system class that is authorized to invoke system calls. We also hope to introduce new system
calls that are safe within sandboxes and are authorized using special user capabilities – e.g., user
capabilities that represent kernel file descriptors directly, avoiding the need for interposition –
similar to the behavior of Capsicum.

47

Filename Description

sys/mips/cheri/ CHERI-specific code: coprocessor 2
initialization and context management

Table 8.1: CheriBSD kernel source directories

• The kernel implements CCall and CReturn fast exception handlers that unseal invoked object
capabilities, push the caller state onto the trusted stack, and restore it on return. If a fault occurs
in the invoked object, control is returned to the caller.

• The kernel’s ktrace facility has been extended to allow user object invocation and return to be
traced.

• The kernel delivers capability-coprocessor faults in userspace processes as signals, extending the
signal trap frame to include capability registers. This allows userspace software (and, in particular,
language runtimes) to catch and handle software protection faults.

• The kernel is extended to allow processes that implement sandboxing to export class, method,
and object statistics.

• The kernel now supports a new ABI and system-call interface, CheriABI, in which all pointers
passed to and from the kernel are implemented as capabilities. This allows userspace processes
to execute pure-capability-ABI binaries that have no dependence on conventional MIPS pointers.

8.1 CheriBSD Kernel Source Code
CheriBSD contains additions to FreeBSD/BERI to support the CHERI capability coprocessor. Table 8.1
contains a list of kernel directories added in introducing CHERI support.

The majority of kernel changes exist in the src/sys/mips subtree, with new CHERI-specific files
added to src/sys/mips/include and src/sys/mips/cheri. The following headers have
been added:

cheri.h C-language definitions relating to capabilities, usable with both CHERI-aware and CHERI-
unaware compiler targets. These include kernel-only context structures such as
struct cheri_kframe and struct cheri_signal, but also context structures shared
with userspace, such as struct cheri_frame and struct cheri_stack. Macro wrap-
pers for inline assembly are provided for CHERI-aware software implemented via CHERI-
unaware C, such as the kernel.

cheriasm.h This header contains definitions for use in CHERI-aware assembly in both userspace
and kernel, such as macros for various CHERI register names, but also kernel-specific code used
in exception handling.

cheric.h This header provides programmer-friendly C macros wrapping compiler builtins for
CHERI register-access, such as cheri_getbase() and cheri_andperm(). This is used
only in userspace due to dependence on CHERI-aware Clang/LLVM.

cherireg.h This header provides C macros suitable for use in both C and assembly that specify
low-level CHERI constants, such as permission-mask values. It is suitable for use in both kernel
and userspace.

48

sys/sys/cheri_serial.h This header provides a structure and definitions supporting serializa-
tion of capabilities independent of their size and micro-architectural details. It is suitable for
use in both kernel and userspace and is installed outside the sys/mips hierarchy to allow use on
non-mips platforms.

The following new C files have been added:

ccall.S Assembly-language implementation of CCall and CReturn fast exception handlers; if an
error is encountered, then the regular MipsUserGenException handler will be jumped to.

ccall_ktrace.SAssembly-language implementation of slow path exception handlers used to trace
CCall and CReturn invocations.

cheri.c The majority of CHERI-specific C code including debugging features, sysctls, initial-
ization for the capability state of threads and processes, handling of fork, portions of signal
handling, exception logging, and system-call authorization.

cheri_bcopy.S CHERI versions of memcpy and bcopy suitable for use throughout the kernel, but
especially in copyin and copyout scenarios requiring no use of the stack due to the potential
for memory-access exceptions.

cheri_debug.c CHERI commands for the in-kernel debugger.

cheri_exception.c Support for reporting CHERI exceptions and registers on the system console.

cheri_signal.c CHERI signal-handling infrastructure.

cheri_stack.c CHERI trusted-stack initialization, copying, and unwinding support, as well as
sysarch system calls to get and set the current trusted stack.

cheri_syscall.c CHERI related system-call infrastructure.

cheriabi_machdep.c ISA dependent CheriABI support including system call vector declaration,
argument parsing, return handling, signal handling, and process memory initialization.

sys/compat/cheriabi/* CheriABI ISA-independent implementation. The implementation is
modelled on the support for 32-bit binaries in sys/compat/freebsd32.

8.2 Capability-Register-File Context Switching
CheriBSD extends the kernel’s support for context management and switching to provide each user
thread with its own capability-register file. This allows each thread to have its own complete capability
state, compatible with the idea that capabilities are compiler-managed. The kernel preserves and restores
this state in the user thread control block (PCB) on each context switch, and also performs transforma-
tions of that state in order to implement in-thread protection-domain transition via CCall/CReturn on
object capabilities.

As the kernel itself makes only minor use of capabilities, and is not currently compiled with a
capability-aware compiler, kernel threads do not have full capability-register-file state in their own PCBs.
Instead, context switching to the kernel occurs in three ways: an initial saving of the userspace PCC and
C0 performed by the hardware and low-level exception handling code, a more complete capability-
register context save and restore when transitioning from a low-level exception handler to kernel C
code, and finally, saving and restoring of a capability-register-file subset during voluntary kernel context
switches.

49

8.2.1 Thread Control Block and Thread State
CheriBSD extends the kernel’s thread control block, struct pcb, with four new fields:
pcb_cheriframe, which saves userspace CHERI registers for the thread, pcb_cheristack,
which holds the CHERI trusted stack for the thread, pcb_cheri_signal, which holds the signal-
handling context to install when a signal is delivered within a sandbox, and pcb_cherikframe,
which holds caller-save registers across a kernel voluntary context switch.

Currently, CheriBSD maintains a ‘full’ CHERI capability-register context only for userspace, not the
kernel, as the kernel is compiled by a CHERI-unaware compiler. Instead, the kernel uses fixed global
values for C0 and PCC, and its context switches maintain two capability registers for use in setting up
userspace state, performing capability-aware memory copies, etc: C11 and C12.

8.2.2 Context-Switching Philosophy
As with FreeBSD/MIPS, fast exception handlers perform only a partial context switch to the kernel by
using reserved registers for exception delivery; if execution of a full C function is required, then full
userspace context is saved in the thread’s PCB. While the MIPS exception-handling code does this by
simply using the two reserved exception-handling registers (K0, K1), the CHERI exception-handling
code instead saves the userspace C0 in KR2C so that it can install the kernel’s own C0 so that MIPS
memory-access instructions work.

Unlike MIPS floating-point support, lazy context switching of capability-coprocessor state is not
currently implemented, requiring a full save and restore of the capability register file when entering
kernel C code; this has been done in anticipation of larger-scale use of capabilities. One possible opti-
mization to the current design might split the current 32-entry capability register file into two portions,
one to be used by the kernel, and the other by userspace, reducing system-call overhead at a cost to
register-file size.

8.2.3 PCB Setup and State Changes
A process’s CHERI state is initialized in the kernel’s exec_setregs routine, which is called in the
kernel implementation of execve. exec_setregs calls cheri_exec_setregs, which sets up
the first thread’s live and signal-handling C0, C11 (stack), IDC, and PCC registers for ambient authority.
It also calls cheri_stack_init to initialize an empty trusted stack.

MIPS machine-dependent state for new threads is set up in cpu_set_upcall. Currently, this
function calls cheri_context_copy, literal cheri_signal_copy, and cheri_stack_copy to
propagate full CHERI register context, signal-handling context, and the trusted stack from the parent
thread to the child. It is not clear this is completely desirable behavior: possibly, new threads should get
fresh trusted stacks?

Another important event is the fork system call, implemented in the MIPS machine-dependent
code in cpu_fork. This function calls cheri_context_copy to propagate the normal CHERI
capability state to the new thread, cheri_signal_copy to propagate the signal-delivery context,
and cheri_stack_copy to copy the current trusted stack to the new thread. The result should be a
thread in the child process that exactly replicates the CHERI state of the thread that invoked fork in
the parent process.

8.2.4 Types of Context Switches
There are a number of types of context switch in the kernel, each affected by additional CHERI thread
state:

50

Low-level exception enter/return When a kernel exception vector is entered, whether from userspace
or kernel, CHERI_EXCEPTION_ENTER saves the preempted C0 and PCC; likewise, on ex-
ception return, CHERI_EXCEPTION_RETURN will restore them. This is sufficient to allow
general-purpose MIPS loads and stores to be used by MIPS exception handlers without perform-
ing a larger context switch for fast-path handlers. If an actual thread context switch takes place
later, these saved capability registers, copied to the exception-handling reserved registers, will be
stored to an explicit in-memory register frame later.

User-to-kernel switch If the low-level exception handler must make a full context switch to the ker-
nel (e.g., save all MIPS and CHERI registers), then SAVE_U_PCB_CHERIFRAME will be
used, which populates the PCB’s CHERI register frame; that state can later be restored by
RESTORE_U_PCB_CHERIFRAME. This occurs if an exception delivered to user code cannot
be satisfied without entering C code – e.g., to process a full VM fault rather than just a TLB miss
that a low-level assembly handler can resolve.

Kernel involuntary switch If an exception preempts the kernel itself (e.g., a kernel TLB miss or in-
terrupt), the full MIPS general-purpose state will be saved by MipsKernGenException, but
only C11 and C12 will be preserved, as the kernel currently uses only these capability registers.
In the future, this code will need to preserve a full kernel CHERI frame; as the kernel register
frame is stored on the stack, this may require larger kernel stacks.

Kernel voluntary switch If a kernel thread sleeps, perhaps due to blocking on a mutex or waiting on
I/O, then it will perform a voluntary context switch via cpu_switch, which in turn will call
SAVE_U_PCB_CHERIKFRAME to RESTORE_U_PCB_CHERIKFRAME to save and restore
caller-save registers in the PCB.

8.3 CCall/CReturn Fast Exception Handlers
The kernel implements CCall and CCReturn via a combined exception handler, CHERICCallVector
that in turn branches to either CHERICCall or CHERICReturn. Both implementations perform the
tests described in the CHERI Instruction-Set Architecture; in addition, CCall expects that an ABI in
which the invoked code capability is always placed in C1, and the invoked data capability is always
placed in C2, allowing the kernel to avoid software instruction decoding. If either path detects an error,
CSetCause will be used to set the capability-cause register, and MipsUserGenException will be
called to enter the kernel’s general user exception handler. CCall will push IDC, PCC, and PC+4;
CReturn likewise pops IDC, PCC, and PC. In the future, it may be desirable to save PC within PCC.

When the kernel is compiled with ktrace support, the trace flags of the calling process
are checked before trusted stack manipulation and slow path handlers CHERICCallKtrace and
CHERICReturnKtrace are called if tracing is enabled. These functions are near duplicates of
MipsUserGenException. They differ in that they return to the fast path handlers in ccall.S
on completion rather than directly user space and they call logging functions rather than trap. En-
abling ktrace support adds a number of memory accesses to the CCall and CReturn fast path and it
should be disabled in performance critical applications.

8.4 Trusted-Stack Manipulation
The trusted stack keeps a record of the CReturn part for each user thread, and is a key part of the kernel’s
CHERI state for each thread (pcb_cheristack). The trusted stack is initialized as empty when the
first thread in a process is created. The trusted stack is inspected or modified in the following situations:

51

CCall exception Frames are pushed onto the trusted stack by invocations of the CCall instruction,
which causes the kernel’s exception handler to push values of PCC, C0, and PC+4 to restore
when the frame is popped.

CReturn exception Frames are popped from the trusted stack by invocation of the CReturn instruction,
which causes the kernel’s exception handler to pop values of PCC, C0, and PC.

CHERI_GET_STACK Userspace code may query the trusted stack using the CHERI_GET_STACK
operation on the sysarch system call. Currently, the kernel and userspace share the same
representation of the stack; in the future, we will want to diverge the two, and also provide a way
for userspace to query trusted-stack size.

CHERI_SET_STACK Userspace code may set the contents of the trusted stack using the
CHERI_SET_STACK operation on the sysarch system call. The kernel will validate that the
stack is approximately valid before installing it, and return an error if the stack is invalid. This call
might be used by sandboxing frameworks or language runtimes to unwind the stack in the event of
an exception delivery; this requires careful simultaneous rewriting of the current general-purpose
and CHERI register frames, and (with care) is safe to do from a signal-handling context.

cheri_stack_unwind If a signal is delivered to a thread that is executing sandboxed code, and
suitable signal-handling configuration has not been set up to safely receive the delivered signal,
then for certain signals the kernel will automatically unwind the stack back to the caller of the
sandbox. This occurs in cheri_stack_unwind.

DDB The show cheristack command will dump the current thread’s trusted stack from the kernel
debugger.

8.5 CHERI-Aware Signal Handling
UNIX signal handling is at best a tricky business, and CHERI does not simplify the problem. In a regular
MIPS or even CHERI-aware process that does not make use of sandboxing (protection domains), signal
handling is unmodified. However, things are more complex when a signal must be delivered while there
is code executing in a sandbox in the target thread. There are several cases:

Sandboxed code, trap signal arises, no registered signal handler If a thread triggers a trap signal
(e.g., SIGSEGV or SIGTRAP) due to an exception, the signal is uncaught (i.e., it doesn’t have
a registered handler), and it is tagged as SIGPROP_SBUNWIND, then the kernel can perform an
automatic trusted-stack unwind using cheri_stack_unwind, returning control to the caller.

For the purposes of this case, ‘sandboxed code’ means that one or more frames are present on the
trusted stack, rather than that the current execution context lacks privilege.

Sandboxed code, registered signal handler, no alternative signal stack If a thread will have a signal
delivered to a registered handler, then we must install a suitable signal-handling context (typically,
ambient authority). As we cannot trust the stack present in the sandbox context, we instead will
use the UNIX alternative signal stack. If one is not defined for the thread, the process will be
terminated as there is no safe way to handle the signal.

For the purposes of this and the following case, ‘sandboxed code’ means that the current executing
context does not have ambient authority – i.e., that it cannot invoke system calls.

52

Sandboxed code, registered signal handler, alternative signal stack If an alternative signal stack is
configured, then ambient authority will be temporarily restored and signal delivery will take place
on the alternative stack. Currently, the kernel installs ambient-authority capabilities in PCC, C0,
C11 (stack capability), and IDC prior to executing the signal handler. When the signal handler
returns, the kernel will restore capability-register state saved on the stack as it would general-
purpose register state. This will release ambient authority if the saved (and possibly rewritten)
register state does not hold it.

Configuring an alternative signal stack requires that a signal stack be allocated and registered
with sigaltstack and the signal handler be registered to use it with the SA_ONSTACK flag in
sigaction.

In addition to the general-purpose register frame installed on the signal handling stack by the kernel,
CheriBSD also installs a copy of the capability-register file from the preempted thread. As with the
general-purpose register frame, the kernel will copy modifications to the CHERI register frame back to
the thread’s capability register file on return from the signal handler, allowing rewriting of its capability
state.

User code can access the saved capability-coprocessor register values, including the
capability-cause register (cf_capcause), via a struct cheriframe pointed to by the
uc_mcontext.mc_cp2state pointer in the context_t argument to the signal handler. The
handler should check that the mc_cp2state pointer is non-NULL, and that the corresponding
uc_mcontext.mc_cp2state_len field is equal to sizeof(struct cheriframe), before
proceeding. This ABI is currently immature, as the same data structure is used both for the kernel’s
internal representation of the capability register file and its on-stack representation; this will change in a
future version of CheriBSD.

As ambient authority is installed, signal handlers are also able to rewrite the trusted stack. This
allows more mature handling of exceptions within sandboxes or other invoked contexts – for example,
unwinding of the trusted stack, garbage collection activities, etc. In CheriBSD’s cheritest tool,
this is used to handle timeouts triggered by SIGALRM, terminating sandboxes if they overrun their
execution-time limit, for example.

A key design choice is that signal handlers are not invoked by a CCall-like mechanism. This is
done for several reasons, not least that we wish to be able to handle trusted-stack overflow in userspace
via a signal handler. Great care must be exercised in writing signal handlers that execute with ambient
authority in order to not leak privileges to a non-ambient context.

8.6 Copying Memory
The kernel’s bcopy, memcpy, copyin, and copyout routines are capability-unaware and will not
preserve tag bits. New cheri_bcopy, cheri_memcpy, copyincap, and copyoutcap are used
in situations where preserving tags is desirable – such as copying in or out of CHERI trusted stacks.
Clearing tag bits across conventional IPC, system call arguments, and so on is import in preventing the
accidental leaking of rights between address spaces where only data copies are intended.

8.7 Tracing Extensions
CheriBSD includes support for tracing capability exceptions, as well as CCall, and CReturn handlers
via the ktrace framework. When the kernel is build with

options KTRACE

53

then these points can be enabled with the ktrace and kdump commands’ -t flag and the e and C
arguments (for exceptions, and CCall/CReturn respectively.) Note that enabling options KTRACE
imposes a significant performance impact on CCall and CReturn.

8.8 Kernel Debugger Extensions
CheriBSD includes a number of minor extensions to the FreeBSD kernel debugger:

show cheri Dump the current kernel thread’s CHERI register file.

show cheriframe Dump the current user thread’s saved CHERI register file.

show cheristack Dump the current user thread’s CHERI trusted stack.

Normally, userspace CHERI exceptions are delivered as signals or trigger termination/core dumps.
Sometimes it is useful to instead enter the kernel debugger, which makes it easier to inspect stack and
register state. A set of sysctls enables this in various situations:

security.cheri.debugger_on_exception Enter the kernel debugger when a thread triggers
a CHERI exception or a system call is blocked due to an attempt to invoke it from a non-ambient
context.

security.cheri.debugger_on_sandbox_unwind enter the kernel debugger when an auto-
matic trusted-stack unwind would take place due to an unhandled trap exception within a sandbox.

The following commands, run as root, will enable these sysctls:

sysctl security.cheri.debugger_on_exception=1
sysctl security.cheri.debugger_on_sandbox_unwind=1

Kernel execution can be restarted using the continue command from the debugger prompt.

8.9 CheriABI
The new CheriABI Application Binary Interface (ABI) introduces a new process execution environment
in which pure-capability CHERI code can be executed. The kernel expects that all pointers passed via
the system-call interface, and also other interfaces such as command-line arguments and environmental
variables, ELF auxiliary arguments, signal handling, and so on, will also be via capabilities rather than
MIPS pointers. This feature can be enabled by compiling options COMPAT_CHERIABI into the
kernel, but is currently considered experimental.

54

Chapter 9

CheriBSD Userspace

The FreeBSD/BERI userspace has been modified in the following ways to support CHERI’s protection
features:

• The libprocstat(3) library and procstat(1) command have been extended to inspect
exported sandbox statistics.

• A new library, libcheri(3), has been added to provide a sandbox API, and to implement a set
of system-class objects that can be delegated to sandboxes. Currently, this consists of a singleton
system object that provides the ability to print to stdout, and a file-descriptor class that allows
delegation of individual kernel-provided file descriptors to sandboxes.

• A new library, libc_cheri(3), has been added to provide core C-language APIs and services
within sandboxes. This library is able to use the system and file-descriptor classes to provide
access to APIs such as printf().

• A new command-line tool, cheritest, implements test cases for a variety of capability-related
functions including sandboxing; cheritest relies on cheritest-helper.bin to provide
sandboxed code.

• A new command-line tool, cheri_tcpdump, implements sandboxed packet sniffing and pars-
ing; cheri_tcpdump relies on tcpdump-helper to provide sandboxed code.

• A new library, libz-cheri(3), implements compression routines with fine-grained memory
protection.

9.1 CheriBSD Userspace Source Code
CheriBSD contains additions to FreeBSD/BERI to support the CHERI capability coprocessor. Table 9.1
contains a list of directories affected by CHERI-specific behavior.

55

Filename Description

bin/cheritest/ Command-line utility exercising CHERI and
CheriBSD features, including sandboxing

ctsrd/ CTSRD-project demo code
lib/libc_cheri/ In-sandbox C library/runtime
lib/libcheri/ Library implementing the CHERI sandbox API;

the CHERI system class implementation
libexec/cheritest-helper/ Sandboxed components for cheritest
libexec/tcpdump-helper/ Sandboxed components for cheri_tcpdump

initialization and context management

lib/libz-cheri Version of libz compiled with CHERI memory
protection

usr.sbin/tcpdump/cheri_tcpdump Version of tcpdump able to use CHERI sandbox-
ing

lib/libprocstat/ Extensions to this library allow procstat(1) to
monitor libcheri sandboxes

usr.bin/procstat/ procstat(1) command extended to monitor
libcheri standboxes

Table 9.1: CheriBSD userspace source directories

56

Bibliography

[1] D. Chisnall, C. Rothwell, B. Davis, R. Watson, J. Woodruff, S. Moore, P. G. Neumann, and M. Roe.
Beyond the pdp-11: Architectural support for a memory-safe c abstract machine. In Proceedings
of the Fifteenth Edition of ASPLOS on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XX, New York, NY, USA, 2014. ACM.

[2] K. Gudka, R. N. Watson, J. Anderson, D. Chisnall, B. Davis, B. Laurie, I. Marinos, S. J. Mur-
doch, P. G. Neumann, and A. Richardson. Clean application compartmentalization with SOAAP
(extended version). Technical Report UCAM-CL-TR-873, University of Cambridge, Computer
Laboratory, 15 JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom, Dec. 2015.

[3] K. Gudka, R. N. M. Watson, J. Anderson, D. Chisnall, B. Davis, B. Laurie, I. Marinos, P. G. Neu-
mann, and A. Richardson. Clean Application Compartmentalization with SOAAP. In Proceedings
of the 22nd ACM Conference on Computer and Communications Security (CCS 2015), October
2015.

[4] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program analysis and trans-
formation. In Proceedings of the international symposium on code generation and optimization:
feedback-directed and runtime optimization, CGO ’04, pages 75–, Washington, DC, USA, 2004.
IEEE Computer Society.

[5] M. K. McKusick, G. V. Neville-Neil, and R. N. M. Watson. The Design and Implementation of the
FreeBSD Operating System, Second Edition. Pearson Education, 2014.

[6] P. G. Neumann and R. N. M. Watson. Capabilities revisited: A holistic approach to
bottom-to-top assurance of trustworthy systems. In Fourth Layered Assurance Workshop,
Austin, Texas, December 2010. U.S. Air Force Cryptographic Modernization Office and AFRL.
http://www.csl.sri.com/neumann/law10.pdf.

[7] R. N. M. Watson, D. Chisnall, B. Davis, W. Koszek, S. W. Moore, S. J. Murdoch, P. G. Neumann,
and J. Woodruff. Bluespec Extensible RISC Implementation (BERI): Software Reference. Tech-
nical Report UCAM-CL-TR-853, University of Cambridge, Computer Laboratory, 15 JJ Thomson
Avenue, Cambridge CB3 0FD, United Kingdom, June 2014.

[8] R. N. M. Watson, D. Chisnall, B. Davis, W. Koszek, S. W. Moore, S. J. Murdoch, P. G. Neumann,
and J. Woodruff. Capability Hardware Enhanced RISC Instructions (CHERI): User’s guide. Tech-
nical Report UCAM-CL-TR-851, University of Cambridge, Computer Laboratory, 15 JJ Thomson
Avenue, Cambridge CB3 0FD, United Kingdom, June 2014.

[9] R. N. M. Watson, D. Chisnall, B. Davis, W. Koszek, S. W. Moore, S. J. Murdoch, P. G. Neumann,
and J. Woodruff. Bluespec Extensible RISC Implementation: BERI Software reference. Technical
Report UCAM-CL-TR-869, University of Cambridge, Computer Laboratory, Apr. 2015.

57

[10] R. N. M. Watson, D. Chisnall, B. Davis, W. Koszek, S. W. Moore, S. J. Murdoch, P. G. Neu-
mann, and J. Woodruff. Capability Hardware Enhanced RISC Instructions: CHERI Programmer’s
Guide. Technical Report UCAM-CL-TR-877, University of Cambridge, Computer Laboratory, 15
JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom, Nov. 2015.

[11] R. N. M. Watson, P. G. Neumann, J. Woodruff, J. Anderson, D. Chisnall, B. Davis, B. Laurie,
S. W. Moore, S. J. Murdoch, and M. Roe. Capability Hardware Enhanced RISC Instructions
(CHERI): Instruction-Set Architecture. Technical Report UCAM-CL-TR-850, University of Cam-
bridge, Computer Laboratory, 15 JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom,
June 2014.

[12] R. N. M. Watson, P. G. Neumann, J. Woodruff, J. Anderson, D. Chisnall, B. Davis, B. Laurie,
S. W. Moore, S. J. Murdoch, and M. Roe. Capability Hardware Enhanced RISC Instructions:
CHERI Instruction-Set Architecture. Technical Report UCAM-CL-TR-864, University of Cam-
bridge, Computer Laboratory, Dec. 2014.

[13] R. N. M. Watson, P. G. Neumann, J. Woodruff, M. Roe, J. Anderson, D. Chisnall, B. Davis,
A. Joannou, B. Laurie, S. W. Moore, S. J. Murdoch, R. Norton, and S. Son. Capability Hardware
Enhanced RISC Instructions: CHERI Instruction-Set Architecture. Technical Report UCAM-CL-
TR-876, University of Cambridge, Computer Laboratory, 15 JJ Thomson Avenue, Cambridge CB3
0FD, United Kingdom, Nov. 2015.

[14] R. N. M. Watson, J. Woodruff, D. Chisnall, B. Davis, W. Koszek, A. T. Markettos, S. W. Moore,
S. J. Murdoch, P. G. Neumann, R. Norton, and M. Roe. Bluespec Extensible RISC Implementation
(BERI): Hardware Reference. Technical Report UCAM-CL-TR-852, University of Cambridge,
Computer Laboratory, 15 JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom, June 2014.

[15] R. N. M. Watson, J. Woodruff, D. Chisnall, B. Davis, W. Koszek, A. T. Markettos, S. W. Moore,
S. J. Murdoch, P. G. Neumann, R. Norton, and M. Roe. Bluespec Extensible RISC Implementa-
tion: BERI Hardware reference. Technical Report UCAM-CL-TR-868, University of Cambridge,
Computer Laboratory, Apr. 2015.

[16] R. N. M. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson, D. Chisnall, N. Dave,
B. s Davis, K. Gudka, B. Laurie, S. J. Murdoch, R. Norton, M. Roe, S. Son, and M. Vadera.
CHERI: A Hybrid Capability-System Architecture for Scalable Software Compartmentalization.
In Proceedings of the 36th IEEE Symposium on Security and Privacy, May 2015.

[17] R. N. M. Watson, P. G. N. J. Woodruff, J. Anderson, R. Anderson, N. Dave, B. Laurie, S. W.
Moore, S. J. Murdoch, P. Paeps, M. Roe, and H. Saidi. CHERI: a research platform deconflating
hardware virtualization and protection. In Runtime Environments, Systems, Layering and Virtual-
ized Environments (RESoLVE 2012), March 2012.

[18] J. Woodruff, R. N. M. Watson, D. Chisnall, S. W. Moore, J. Anderson, B. Davis, B. Laurie, P. G.
Neumann, R. Norton, and M. Roe. The CHERI capability model: Revisiting RISC in an age of
risk. In Proceedings of the 41st International Symposium on Computer Architecture (ISCA 2014),
June 2014.

58

	877.pdf
	Introduction
	Background
	Getting CHERI
	Licensing
	Publications
	Version History
	Document Structure

	I Compiler
	Building and Using CHERI Clang
	Cross-Compiling for CHERI
	Building a Complete SDK
	Building the Assembler
	Building the Compiler

	Using Clang
	Disassembling CHERI Binaries
	Assembly Extensions
	Capability Move
	Capability-Relative Floating-Point Loads and Stores

	Abstract model
	Capabilities as pointers
	Operations on capabilities
	Integers in capabilities
	The different ABIs

	C compiler support
	Supported targets
	The pure-capability ABI
	Pointer qualifiers
	Pragmas for generating capabilities
	Built-in functions
	Predefined macros
	__intcap_t
	Input and output
	Inline assembly
	memcap.h
	Compiler assistance for cross-domain calls

	LLVM implementation
	Address space 200
	Data layout
	Alignment of types
	SelectionDAG types
	LLVM IR Intrinsics

	The CHERI ABIs
	Register usage
	The pure-capability ABI

	Calling conventions
	Variadic calls

	Cross-domain calls: ``ccall''
	Global initialization
	Return address protection

	II Operating System
	Building and Using CheriBSD
	Obtaining FreeBSD/BERI and CheriBSD Source Code
	Building CheriBSD
	CheriBSD Build Process

	Building the CheriBSD Kernel

	CheriBSD Kernel
	CheriBSD Kernel Source Code
	Capability-Register-File Context Switching
	Thread Control Block and Thread State
	Context-Switching Philosophy
	PCB Setup and State Changes
	Types of Context Switches

	CCall/CReturn Fast Exception Handlers
	Trusted-Stack Manipulation
	CHERI-Aware Signal Handling
	Copying Memory
	Tracing Extensions
	Kernel Debugger Extensions
	CheriABI

	CheriBSD Userspace
	CheriBSD Userspace Source Code

