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Abstract. Private Set Intersection protocols (PSIs) allow parties to
compute the intersection of their private sets, such that nothing about
the sets’ elements beyond the intersection is revealed. PSIs have a vari-
ety of applications, primarily in efficiently supporting data sharing in a
privacy-preserving manner. At Eurocrypt 2019, Ghosh and Nilges pro-
posed three efficient PSIs based on the polynomial representation of sets
and proved their security against active adversaries. In this work, we
show that these three PSIs are susceptible to several serious attacks. The
attacks let an adversary (1) learn the correct intersection while making
its victim believe that the intersection is empty, (2) learn a certain ele-
ment of its victim’s set beyond the intersection, and (3) delete multiple
elements of its victim’s input set. We explain why the proofs did not
identify these attacks and propose a set of mitigations.

1 Introduction

A Private Set Intersection protocol (PSI) lets mutually distrustful parties com-
pute the intersection of their private sets such that nothing, about the sets’
elements, beyond the result is revealed. The problem that a PSI solves is a spe-
cial case of the problem that a generic secure multi-party computation scheme
(MPC) solves. An MPC lets parties jointly execute an arbitrary function on
their private inputs without learning anything beyond the intended result. Al-
though PSI’s security requirements can be satisfied by MPCs [28], researchers
realized that often special-purpose protocols impose lower costs [15, 17]. As a re-
sult, protocols have been specifically designed to address the PSI problem. PSIs
have been studied extensively due to their numerous real-world applications to
reduce online harm by preserving the Internet users’ privacy, to some extent.
For instance, they have been used in (a) contact tracing schemes that prevent
the further spread of COVID-19 [16], (b) certain Google technologies that find
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target audiences for marketing campaigns [25] or check compromised credentials
[38], (c) online gaming [9], and (d) remote diagnostics [8].

At Eurocrypt 2019, Ghosh and Nilges [21] proposed three PSIs (i.e., two-
party, multi-party, and threshold multi-party) that are designed to remain secure
against active adversaries. These protocols are efficient as they are primarily
based on symmetric key primitives and polynomial representation of sets, and
avoid using zero-knowledge proofs usually utilised in the protocols that consider
active adversaries. The three PSIs have been defined and proven secure in the
well-known Universal Composability (UC) paradigm [11]. To date, their multi-
party protocol is the most efficient multi-party PSI designed to remain secure in
the presence of active adversaries.

Our Contributions. We identify three attacks that can be mounted on all of
the three “maliciously secure” PSIs in [21]. In particular, we show an adversary
can successfully carry out the following attacks:

1. Attack 1: learning the result, i.e., sets’ intersection, while making its honest
counter-party believe that there is no element in the intersection.

2. Attack 2: learning a certain element (not necessarily in its set) of the honest
party’s set beyond the sets’ intersection.

3. Attack 3: deleting multiple elements of its counter-party’s input set.

Our attacks’ analysis indicates that Attack 1 always succeeds (except with
a negligible probability), also Attacks 2 and 3 succeed with a non-negligible
probability when the sets’ universe size is polynomial or constant in the secu-
rity parameter. We show that these attacks are feasible in terms of cost to the
attacker. We identify several flaws in the protocols’ design and proofs that led
to the attacks remaining undetected. Accordingly, we propose a set of candidate
mitigations. At a high level, most of the issues we identify are the result of a
single case: inappropriate use of polynomial representation. This representation
has been widely used in various cryptographic schemes beyond PSIs, such as
in secret sharing [37], error-correcting codes [35], e-voting [29], or secure multi-
party computation [26]. Nevertheless, our findings provide evidence that special
care should be taken when polynomial representation is utilised in protocols
that should remain secure against active adversaries. We hope, our work will
be used as a reference point by future researchers who need to integrate this
representation into their protocols, to avoid (at least) the issues we highlight.

2 Background

In this section, we present the definitions and techniques used in the PSIs pro-
posed by Ghosh and Nilges [21]. This work proposes three PSIs: (a) two-party,
(b) multi-party, and (c) threshold. These PSIs use (a) polynomials to represent
set elements, which lets parties compute the intersection in a privacy-preserving
way, and (b) Oblivious Polynomial Addition (OPA) to let parties randomise each
other’s input polynomials. The OPA itself uses two primitives; namely, Oblivious
Linear Function Evaluation (OLE) and enhanced OLE.



For the sake of simplicity, we will focus on and analyse the two-party PSI.
In the following sections, we describe three attacks that can be mounted on it.
The other two PSIs are susceptible to similar attacks. We use κ as the security
parameter. As in the original work, we consider finite fields F that are exponential
in the size of the security parameter, κ. A function is negligible (in κ) if it is
asymptotically smaller than any inverse polynomial function. By [n] we denote
the set {1, . . . , n}. The size of a set S is denoted by |S| and set elements’ universe
is denoted by U . We say the universe size, |U|, is: (a) large, if |U| is exponential
in κ, (b) medium, if |U| is polynomial in κ, and (c) small, if |U| is constant in κ.

2.1 Representing Sets by Polynomials

The idea of using a polynomial to represent a set’s elements was proposed by
Freedman et al. [17]. Since then, the idea has been widely used, e.g., in [1–4,
22, 30]. In this representation, set elements S = {s1, ..., sd} are defined over F

and set S is represented as a polynomial of the form: p(x) =
d∏

i=1

(x− si), where

p(x) ∈ F[X] and F[X] is a polynomial ring. Often a polynomial, p(x), of degree
d is represented in the “coefficient form” as follows: p(x) = a0+a1 ·x+...+ad ·xd.

The form
d∏

i=1

(x−si) is a special case of the coefficient form. As shown in [30, 7], for

two sets S(A) and S(B) represented by polynomials pA and pB respectively, their
product, which is polynomial pA·pB, represents the set union, while their greatest
common divisor, gcd(pA,pB), represents the set intersection. For two degree-d
polynomials pA and pB, and two degree-d random polynomials γA and γB whose
coefficients are picked uniformly at random from the field, it is proven in [7, 30]
that: θ = γA · pA + γB · pB = µ · gcd(pA,pB), where µ is a uniformly random
polynomial, and polynomial θ contains only information about the elements in
S(A) ∩ S(B), and contains no information about other elements in S(A) or S(B).

Polynomials can also be represented in the “point-value form”. In particular,
a polynomial p(x) of degree d can be represented as a set of m (m > d) point-
value pairs {(x1, y1), ..., (xm, ym)} such that all xi are distinct non-zero points
and yi = p(xi) for all i, 1 ≤ i ≤ m. If xi are fixed, then we can represent
polynomials as a vector #»y = [y1, ..., ym]. Polynomials in point-value form have
been used previously in PSIs [1–4, 22, 32]. A polynomial in this form can be
converted into coefficient form via polynomial interpolation, e.g., using Lagrange
interpolation [5]. Moreover, one can add or multiply two polynomials, in point-
value form, by adding or multiplying their corresponding y-coordinates. In this
case, the polynomial interpolated from the result would be the two polynomials’
addition or product. Often PSIs that use this representation assume that all xi

are picked from F \ U .

2.2 Oblivious Linear Function Evaluation

Oblivious Linear function Evaluation (OLE) is a two-party protocol that involves
a sender and receiver. In OLE, the sender has two inputs a, b ∈ F and the



receiver has input c ∈ F, the protocol allows the receiver to learn only s =
a · c + b ∈ F, while the sender learns nothing. There are several constructions
of OLE based on a variety of assumptions that are secure against passive e.g.,
[27], and active adversaries, e.g., [19]. OLE has various applications such as
private set intersection [21, 22], secure multi-party computation [18], or even
privacy-preserving machine learning [36]. The PSI protocols [21] that we analyse
in this paper, sometimes invoke another primitive (called OPA that we shortly
explain) which itself makes a black-box call to the OLE of [19]. Since the OLE
has been proven secure in the well-known UC framework, other caller protocols
can make calls to OLE’s ideal functionality, denoted by FOLE. The PSI protocols
also use an enhanced version of the above OLE. The enhanced OLE and its
ideal functionality are denoted by OLE+ and FOLE+ , respectively. Briefly, OLE+

ensures that the receiver cannot learn anything about the sender’s inputs, even if
it sets its input to 0. For the sake of completeness, we present FOLE in Appendix
A, and OLE+, FOLE+ in Appendix B.

2.3 Oblivious Polynomial Addition

Ghosh and Nilges [21] propose Oblivious Polynomial Addition (OPA) which can
be seen as a variant of OLE, where parties’ inputs are polynomials (instead of the
field’s elements). In particular, in this scheme two parties are involved, sender
and receiver. The sender has two polynomials r and u and the receiver has a
single polynomial, p. The scheme allows the two parties to compute a linear
combination of their inputs, i.e., s = p · r + u, and lets the receiver learn the
result, s. The security of OPA requires that (a) nothing about the sender’s input
polynomials is leaked to the receiver (even if the receiver inserts a 0 polynomial),
(b) nothing about the receiver’s input polynomial and result is leaked to the
sender, and (c) a malicious party who acts arbitrarily is detected by its counter-
party, with a high probability. The OPA protocol and its functionality, FOPA,
are presented in Figure 1 and Appendix C respectively.

2.4 Two-party PSI

In this section, we describe the two-party PSI of Ghosh and Nilges [21] that
has been designed to be secure against an active adversary. The protocol mainly
utilises polynomial representation of sets and OPA. At a high level, in this pro-
tocol, each party generates a polynomial that represents its set. After that, each
party randomises its counter-party’s polynomial. To do so, a party (as a sender)
picks two random polynomials and inserts them into the OPA. The other party
(as a receiver) inserts into the OPA its polynomial that represents its set; in
return, it receives its polynomial in a randomised form. The parties switch their
role and run the OPA again. Next, they exchange messages that allow them to
find the result (intersection) polynomial whose roots contain the sets’ intersec-
tion. Each party evaluates the result polynomial at every element of its set and
considers the element in the intersection, if the evaluation’s result is zero.



• Public parameters: a vector of distinct non-zero elements: #»x = [x1, . . . , x2d+1]
1. Computing s(x) = p(x) · r(x) + u(x), where the sender has r(x),u(x) and the

receiver has p(x) as inputs, deg(u) ≤ 2d, deg(r) = d, deg(p) ≤ d.
(a) Sender: ∀j, 1 ≤ j ≤ 2d + 1, computes rj = r(xj) and uj = u(xj). Then, it

inserts (rj , uj) into F (j)

OLE+ .
(b) Receiver: ∀j, 1 ≤ j ≤ 2d + 1, computes pj = p(xj). Then, it inserts every pj

into F (j)

OLE+ and receives sj = pj · rj + uj . It interpolates a polynomial s(x)
using pairs (xj , sj). Next, it checks if deg(s) ≤ 2d. Otherwise, it aborts.

2. Consistency check:

(a) Sender: picks a random x∗
$← F, and sends it to the receiver.

(b) Receiver: picks random values f, v
$← F and inserts them into an instance of

FOLE, denoted by F1
OLE. It inserts (p(x∗),−s(x∗) +f) into another instance of

FOLE, say F2
OLE.

(c) Sender: picks a random value t
$← F, and inserts it to F1

OLE that sends c =
f · t + v to the sender. It also inputs r(x∗) into F2

OLE that sends f̄ = r(x∗) ·
p(x∗) − s(x∗) + f to the sender which sums it with u(x∗). This yields f ′ =
r(x∗) · p(x∗)− s(x∗) + f + u(x∗). The sender sends f ′ to the receiver.

(d) Receiver: It aborts if f ′ 6= f ; otherwise, it sends v to the sender.
(e) Sender: It aborts if f ′ · t+ v 6= c.

3. Receiver: picks xr and runs similar consistency check with the sender.

Fig. 1: Oblivious Polynomial Addition (OPA) protocol [21]

To check the result’s correctness, the parties participate in an efficient “out-
put verification” phase. In this phase, parties A andB pick random values z and q
respectively. Then, a party evaluates its polynomials at its random element (say
z) which yields a small set of values. It sends the result to its counter-party,
which (a) combines the messages that the other party sent, (b) evaluates the
result polynomial at z, (c) checks if the values generated in the previous two
steps are equal, and (d) accepts the result if they are equal. The two-party PSI
is presented in Figure 2. There is a minor difference between the two-party PSI
presented in [21] and Figure 2. Namely, in Figure 2 we replaced the OPA’s ideal
functionality FOPA with the actual protocol, OPA. This change (that does not
affect the protocol at all) helps clarify the explanation of our attacks.

3 Attack 1: Making Honest Party Learn Incorrect Result

In this section, we describe an attack scenario in which an adversary crafts
certain messages in the PSI, that ultimately would allow that party to learn
the actual result, i.e., the intersection, while (a) making its honest counter-
party believe that there is no element in the intersection, and (b) not having
misbehaviour detected. Thus, this attack allows the adversary to affect the PSI’s
correctness. The issue stems from a flaw in the protocol that lets a party include
in the result a polynomial which is not re-randomized by its counter-party.



Each party I ∈ {A,B} has a set S(I), where m = max(|S(A)|, |S(B)|) + 1.

1. PSI Computation
(a) Party I ∈ {A,B}: represents its set elements (i.e., all s(I)j ∈ S(I)) as a degree-m

polynomial: pI = ωI(x) ·
ö∏

j=1

(x − s(I)j ), where ωI(x) is a random polynomial

and ö = |S(I)|. Each party I ∈ {A,B} picks three random polynomials: rI ,uI

and r′I , where the degree of uI is 2m and the degree of rI and r′I is m.
(b) The parties invoke OPA where party A inserts rA,uA and party B inserts pB

to OPA, which outputs sB = pB · rA + uA to party B.
(c) The parties again invoke OPA, this time party A inserts pA while party B

inserts rB,uB to OPA that outputs sA = pA · rB + uB to party A.
(d) Party A sends s′A = sA − uA + pA · r′A to party B.
(e) PartyB computes: p∩ = s′A+sB+pB·r′B−uB = pA·r′A+pA·rB+pB·rA+pB·r′B.

It sends the result polynomial, p∩, to party A.
(f) To find the intersection, party I evaluates polynomial p∩ at every element of

its set, s(I)j , and considers the element in the intersection if p∩(s(I)j ) = 0.
2. Output Verification

(a) Parties A and B pick random values z, q
$← F respectively and send them to

their counter-party.
(b) Party B sends αB = pB(z), βB = rB(z), and δB = r′B(z) to party A.

(c) Party A checks if: p∩(z)
?
= pA(z) · (βB + r′A(z)) + αB · (rA(z) + δB).

(d) Party A sends αA = pA(q), βA = rA(q), and δA = r′A(q) to party B.

(e) Party B checks if: p∩(q)
?
= pB(q) · (βA + r′B(q)) + αA · (rB(q) + δA).

Fig. 2: Two-party PSI in [21]

3.1 Attack Description

Without loss of generality, we let party B be malicious. Our focus will be on the
two-party PSI, presented in Figure 2. Both parties honestly perform steps 1a–1d.
However, B in step 1e, as part of computing polynomial p∩, instead of summing
s′A with the product pB · r′B, it sums s′A with another random polynomial r′′B of
degree 2m and then honestly adds the rest of the polynomials. So, now p∩ is:

p̃∩ = s′A + sB + r′′B − uB

= pA · r′A + pA · rB + pB · rA + r′′B
(1)

Party B sends p̃∩ to A, in step 1e. In the “output verification” phase, both parties
honestly take step 2a, to generate z and q. In step 2b, B honestly computes
αB = pB(z), βB = rB(z), but it sets δB = r′′B(z) · (αB)−1, instead of setting
δB = r′B(z). It sends αB, βB, and δB to honest party A which in step 2c:

1. evaluates the result polynomial, p̃∩, at z that yields:

p̃∩(z) = pA(z) · r′A(z) + pA(z) · rB(z) + pB(z) · rA(z) + r′′B(z)

2. generates value ζ as below (given messages αB, βB, and δB, sent by party B):



ζ = pA(z) · (βB + r′A(z)) + αB · (rA(z) + δB)

= pA(z) · (rB(z) + r′A(z)) + pB(z) · (rA(z) + r′′B(z) · (αB)−1)

= pA(z) · rB(z) + pA(z) · r′A(z) + pB(z) · rA(z) + r′′B(z)

3. checks if p̃∩(z) equals ζ, i.e., p̃∩(z)
?
= ζ. If passed, then it accepts the result.

3.2 Attack Analysis

By using the above approach, malicious party B can pass the verification in the
PSI and convince A to accept the manipulated result. Malicious party B can gen-
erate the correct result (i.e., sets’ intersection) for itself, by honestly computing
p∩ in step 1e and following the protocol in step 1f. However, given manipulated
result p̃∩, presented in Equation (1), honest party A cannot learn the actual
sets’ intersection, for the following reason. Let us rewrite the manipulated result
as p̃∩ = γ + r′′B, where γ = pA · r′A + pA · rB + pB · rA. Note that polynomial
γ encodes the actual result, as its roots contain the intersection of the sets.
But, r′′B is a random polynomial of degree 2m, so the probability that its roots
contain all elements in the intersection is negligible in κ. In particular, the said
probability is 1

|F|h , where h is the intersection cardinality (for a formal analysis,

we refer readers to Appendix F). This means that the set of roots of polynomial
p̃∩ = γ + r′′B does not contain all common roots of both polynomials γ and r′B,
except with a negligible probability. Thus, the manipulated polynomial, p̃∩, does
not represent the intersection of the sets. Accordingly, party A, which does not
know r′B, cannot learn the correct result and the malicious party can succeed
with a high probability, Pr1 = 1 − 1

|F|h . Attack 1 is efficient, as it requires the

adversary to perform only 2m + 1 extra modular additions and multiplications
in total. We also examined the protocol’s security proof. The inspection shows
that the lack of analysis of the case where δB 6= r′B(z) in the proof, led to Attack
1. We refer readers to Appendix G.1 for a detailed analysis of the proof’s flaw.

Extension to Multi-party Protocol. The security issue, identified in this sec-
tion, is inherited by the multi-party PSI, presented in Figure 10 in [21], because
it uses the same verification mechanism. Specifically, in the multi-party PSI, a
malicious party (except the central party, P0) in step 3 of phase 3, replaces pi ·r′i
with r′i. To pass the verification, in step 2 of phase 5, it sets δi = r′i(x

∗) · (αi)
−1,

instead of setting δi = r′i(x
∗), where x∗ is a random value generated in step 1 of

phase 5. For central party P0 to mount a similar attack, it follows the instruc-
tions provided above for malicious party B. Since the threshold multi-party PSI
makes a black-box call to the multi-party PSI, a similar attack we described in
this section (and later sections) can be mounted to the threshold scheme too.

3.3 Candidate Mitigation

A closer look at the above attack reveals that the main source of the issue is the
use of the polynomials’ product pI · r′I , in steps 1d and 1e, where the product



is not re-randomized by the other party, and is a part of the result polynomial.
Fortunately, the above issue can be efficiently addressed, for the two-party PSI, if
the protocol is slightly adjusted. Nonetheless, addressing the issue for the multi-
party PSI would require each party to interact with all other parties and so would
add significant costs. The remedy for the two-party PSI relies on the idea that
(1) each party randomizes its input polynomial, (2) each party re-randomizes its
counter-party’s input polynomial, and (3) the result polynomial consists of the
sum of only the re-randomized input polynomials.

Next, we present the modified two-party PSI. We first describe the “PSI
computation” phase. In step (a) party I ∈ {A,B}: represents its set elements

s(I)j ∈ S(I) as a degree-m polynomial: pI = ωI(x) ·
ö∏

j=1

(x− s(I)j ), where ωI(x) is a

random polynomial and ö = |S(I)|. Each party I picks three random polynomials:
rI ,uI and r′I , where the degree of uI is 3m and the degree of rI and r′I is m. It
also computes p̄I = pI · r′I . In step (b) the parties invoke OPA where party A
inserts rA,uA and party B inserts p̄B to OPA, which outputs sB = p̄B · rA + uA

to B. In step (c) the parties invoke OPA again, this time A inserts p̄A while B
inserts rB,uB to OPA that outputs sA = p̄A · rB + uB to A. In step (d) party A
sends s′A = sA − uA to B. In step (e) party B computes: p∩ = s′A + sB − uB =
p̄A · rB + p̄B · rA. It sends p∩ to A. In step (f) to find the intersection, party
I evaluates polynomial p∩ at every element of its set, s(I)j , and considers the
element in the intersection if p∩(s(I)j ) = 0.

Now we move to the “output verification” phase. In step (a) parties A and B

pick random values z, q
$← F respectively and send them to their counter-party.

In step (b) party B sends αB = p̄B(z) and βB = rB(z), to A. In step (c) party A

checks if: p∩(z)
?
= p̄A(z)·βB+αB ·rA(z). In step (d) party A sends αA = p̄A(q) and

βA = rA(q) to B. In step (e) party B checks if: p∩(q)
?
= p̄B(q) · βA + αA · rB(q).

In short, the scheme is now secure because (1) p∩ leaks nothing beyond the
intersection, (2) neither party knows its counter-party’s random polynomials
rI , r

′
I and ωI , (3) the evaluation of random polynomial ωI at a random point

yields a random value, and (4) the result polynomial is the sum of only re-
randomized input polynomials. In Appendix D, we outline how the solution can
be used for the multi-party PSI.

4 Attack 2: Learning Honest Party’s Element Beyond
The Intersection

In this section, we describe an attack scenario in which a malicious party in
the PSI exploits the OPA as a subroutine to check if a certain element (not
necessarily an element of its set) exists or not in its honest counter-party’s set.

The attack violates the protocol’s privacy by allowing the adversary to (a)
learn an element of the honest party’s set beyond the sets’ intersection or (b)
efficiently establish the presence or absence of an element in the honest party’s
set without completing the PSI and without allowing the honest party to learn
anything about the other party’s set. The source of the issue is that, in the



OPA, a sender is given the ability to independently pick a random value. This
lets a malicious sender pick a value of its choice, x′∗, and check if that element
is in its honest counter-party’s set, i.e., if it is a root of the honest party’s input
polynomial. In the attack, if x′∗ is in the other party’s set, then the adversary
would always pass verifications; but, if x′∗ is not in that set, then it would be
detected. In the latter case, the adversary still learns the additional information
that x′∗ is not in its counter-party’s set. For the sake of simplicity, in the attack’s
description below, we focus on a worst-case scenario where the adversary has no
background knowledge of its counter-party’s set, so it picks x′∗ uniformly at
random from U . As we will show later, the adversary can conclude that x′∗

is in the other party’s set and escape from being detected with non-negligible
probability, even if the element x′∗ is picked randomly from U , when the universe
size is medium or small.

4.1 Attack Description

Consider the case where malicious party A guesses an element, x′∗
$← U , of

honest party B’s set, S(B). To evaluate its guess, A participates in the PSI with
B. A follows steps 1a and 1b of Figure 2, and accordingly invokes the OPA.
However, it deviates from some of the instructions in the OPA. In particular,
both parties honestly take steps 1a and 1b of Figure 1, where B’s input, p, is a
polynomial that represents its set elements. But, in step 2a of Figure 1, A instead

of picking a uniformly random value, x∗
$← F, uses x′∗, and sends that value to

B which (given x′∗) follows the protocol in step 2b of Figure 1. In step 2c of
Figure 1, A instead of inserting r(x′∗) to F2

OLE, it inserts an arbitrary value, w′,
to F2

OLE, where w′ 6= r(x′∗). In this case, F2
OLE outputs f̄ = w′ ·p(x′∗)−s(x′∗)+f

to A which adds the output with u(x′∗), resulting in:

f ′ = w′ · p(x′∗)− s(x′∗) + f + u(x′∗)

= w′ · p(x′∗)− p(x′∗) · r(x′∗) + f
(2)

Both parties A and B honestly follow the rest of the OPA. If A correctly
guesses the set element, then it holds that p(x′∗) = 0, because the element
would be a root of polynomial p which represents the set. If p(x′∗) = 0, then by
Equation (2) it holds that f ′ = f . Therefore, the adversary can pass the check
in step 2d of Figure 1 and at this point can conclude that x′∗ is in B’s set.

4.2 Attack Analysis

In the PSI, when the adversary concludes that x′∗ is in B’s set, it can (a) honestly
take the rest of the steps or (b) avoid doing so. In the former case, the adversary
learns the intersection and finds out the guessed element is in the receiver’s set,
while the honest party learns only the intersection. In the latter case, it learns a
single element of the honest party’s set without completing the PSI that saves
it costs too, while the honest party learns nothing, not even the intersection. So,
in either case, the successful adversary learns more than its counter-party does.



Note that a malicious B can also carry out the same attack as it is allowed to
pick a (random) value of its choice in phase 3 of Figure 1.

Recall, x′∗ is picked uniformly at random from U and if x′∗ is in the receiver’s
set, then the adversary can always pass the OPA’s verification. So, the proba-
bility that it can confirm x′∗ is in the other party’s set and escape from being
detected depends on the size of U and the set’s cardinality. Specifically, the prob-

ability is Pr2 = |S(B)|
|U| . The adversary can also find out x′∗ is not in the other

party’s set with probability Pr′2 = 1− |S
(B)|
|U| . In the majority of PSIs, there is no

assumption made on the size of U , e.g., in [1–4, 12, 13, 21, 28, 31]. The universe
size can be large, medium, or even small; for instance, the universe size of tem-
perature, salary, age, and medical treatment is small [10, 14]. Hence, the above
adversary can confirm x′∗ is in the other party’s set without being caught with
non-negligible probability, when the universe size is medium or small, whereas
that probability would be only negligible if the universe size is large. Also, when
the adversary possesses background knowledge of its counter-party’s set, it can
increase the above probability. The background knowledge could be a small set
of elements likely to be in the other party’s set. In this case, the adversary picks
x′∗ from this set to mount the attack; this is in principle akin to the well-known
online dictionary attack. Interestingly, Attack 2 does not impose any additional
cost to the adversary. This attack was not identified in the protocol’s security
proof because the proof does not analyse the case where an adversary in the
“consistency check” deviates from the protocol and still passes the verification.
We refer readers to Appendix G.2 for further discussion on the proof’s flaw.

Extension to Multi-party Protocol. In the multi-party PSI, each party P ∈
{P1, ..., Pn−1} separately participates in the OPA along with the central party,
P0. This means a malicious party P can use the above attack to check whether
P0 has a certain element. Similarly, P0 can carry out the attack. The central
party’s attack will have more severe repercussions than P ’s attack, because in
each run of the PSI, the central party can interact with and attack more parties
(i.e., n− 1 parties) and accordingly can learn more information.

4.3 Candidate Mitigations

One may adjust the protocol such that once an honest receiver finds out p(x′∗) =
0 it aborts, in step 2b of Figure 1. However, this behavior itself would reveal to
the malicious sender that it has correctly guessed the element. The above issue
can be tackled by letting the parties run a coin-tossing protocol (secure against
active adversaries) to compute x∗, which would add a small cost.

5 Attack 3: Deleting Honest Party’s Set Elements

In this section, we show how an adversary can delete certain elements of its
counter-party’s input set during the PSI computation, which affects the pro-
tocol’s correctness and privacy. Briefly, the attack lets a successful adversary



conclude that certain elements exist in its victim’s set. The probability that the
adversary succeeds without being detected is non-negligible when set elements’
universe size is medium or small. The main source of the issue is the use of point-
value (polynomial) representation of sets. Before we elaborate on the attack, we
present the following theorem that is in the core of the adversary’s strategy in
order to successfully mount its attack. We refer readers to Appendix H for the
theorem’s formal statement and proof.

Theorem 1 (informal). A set of y-coordinates of a polynomial can be multi-
plied by a set of non-zero values, such that the polynomial interpolated from the
product misses a specific root of the original polynomial.

5.1 Attack Description

We first focus on deleting a single element. Later, we will show that the malicious
party can delete multiple elements. We split the attack into three phases (a) set
manipulation, (b) passing OPA’s verification, and (c) passing PSI’s verification.

Phase (a): Set Manipulation. This phase involves both the PSI and OPA.
Assume that malicious party A guesses at least one of party B’s set elements, say
s(B)
1 , and wants to delete it from B’s input. Similar to Attack 2, we assume s(B)

1 is
picked uniformly at random from U . Loosely speaking, the idea behind the attack
is that while the adversary takes steps of the OPA, as the PSI’s subroutine, it also
generates a multiplicative inverse of (y-coordinates of a polynomial representing)
s(B)
1 and delicately uses the inverse as part of its input. This ultimately cancels

out the same element encoded in its counter-party’s polynomial that is inserted
into the same OPA. In particular, malicious party A honestly follows the PSI
in step 1a to generate polynomials pA,uA, and r′A, with an exception; namely,
now it picks a random polynomial, r̄A, of degree m− 1 (instead of picking rA of
degree m). Then, in step 1b, party A sends r̄A and uA to the OPA. Next, party
A performs as follows in step 1a of Figure 1.

(i) evaluates r̄A at every element xj ∈ #»x = [x1, ..., x2d+1]. This results in a vector
of y-coordinates: #»q 1 = [r̄A(x1), ..., r̄A(x2d+1)].

(ii) constructs another polynomial of the following form: x − s(B)
1 . Recall, s(B)

1

is the element it guessed. It evaluates the polynomial at every element xj.
This results in a vector of y-coordinates: [(x1 − s(B)

1 ), ..., (x2d+1 − s(B)
1 )].

(iii) generates the multiplicative inverse of each y-coordinate, that was computed
in step (ii). This yields #»q 2 = [(x1 − s(B)

1 )−1, ..., (x2d+1 − s(B)
1 )−1].

(iv) multiplies the elements of vectors #»q 1 and #»q 2, component-wise. This yields
#»q 3 = [r̄A(x1) · (x1 − s(B)

1 )−1, ..., r̄A(x2d+1) · (x2d+1 − s(B)
1 )−1].

(v) evaluates random polynomial uA, generated honestly in step 1a, at every
element xj. This results in #»q 4 = [uA(x1), ...,uA(x2d+1)].

(vi) sends every pair (q3,j, q4,j) to F (j)

OLE+ , where q3,j ∈ #»q 3 and q4,j ∈ #»q 4.



This means that instead of sending rA(xj), malicious party A now sends
q3,j = r̄A(xj) · (xj − s(B)

1 )−1 to F (j)

OLE+ . In this case, in step 1b of Figure 1, honest
party B (who inserted values pB(xj) into F (j)

OLE+) receives the following values
from F (j)

OLE+ . For every j, 1 ≤ j ≤ 2d+ 1 :

yj = pB(xj) · q3,j + q4,j

=
(
ωB(xj) · (xj − s(B)

1 ) ·
ö∏

i=2

(xj − s(B)

i )
)

︸ ︷︷ ︸
p

B
(x

j
)

·
(
r̄A(xj) · (xj − s(B)

1 )−1

)
︸ ︷︷ ︸

q3,j

+ uA(xj)︸ ︷︷ ︸
q4,j

=
(
ωB(xj) ·

ö∏
i=2

(xj − s(B)

i )
)
·
(
r̄A(xj)

)
+ uA(xj)

(3)
In the same step, party B uses pairs (xj, yj), j ∈ [2d + 1], to interpolate a
polynomial, s′B, that has the following form.

s′B =
(
ωB(x) ·

ö∏
i=2

(x− s(B)

i )
)
·
(
r̄A(x)

)
+ uA(x) (4)

Note that in the PSI, in step 1b of Figure 2, honest party B will receive
polynomial s′B as the output of the OPA (if malicious party A manages to pass
the OPA’s verification; we will show it does). Furthermore, each value (xj−s(B)

1 )·
ö∏

i=2

(xj − s(B)
i ) in Equation (3) has the same structure as each µj has in Theorem

1 (in Appendix H). Hence, according to Equations (3) and (4) and Theorem
1, malicious party A has managed to remove s(B)

1 from roots of pB used in the
above step. This ultimately leads to the elimination of the element from the
final result, i.e., the sets’ intersection. To make that happen, A follows the PSI
in steps 1c and 1d of Figure 2 by honestly computing s′A = sA−uA +pA ·r′A, and
sending s′A to B. Given polynomials s′B and s′A, party B, in step 1e of Figure 2,
follows the protocol and computes the result polynomial (presented below) that
is supposed to encode the sets’ intersection.

p∩ = s′A + s′B + pB · r′B − uB

= pA · r′A + pA · rB +
(
ωB ·

ö∏
i=2

(x− s(B)

i )
)
· r̄A + pB · r′B

(5)

Nevertheless, as it is evident in Equation (5), the result polynomial’s roots do
not include element s(B)

1 with a high probability, even if both parties’ sets contain

it. Because the roots of polynomial
(
ωB ·

ö∏
i=2

(x − s(B)
i )
)

lack that element, due

to malicious party A’s manipulation described above.

For malicious party A to fully succeed, it also needs to pass two verifications,
one in the OPA and the other in the PSI. Below, we explain how it can do so.



Phase (b): Passing OPA’s Verification. This phase involves only the OPA.
Since we have already covered steps 1a and 1b in the OPA (in the previous
phase description) we will focus only on the “consistency check” in this protocol.
Parties A and B honestly follow the OPA in steps 2a and 2b. So, malicious party
A (as the sender) in step 2a honestly picks a random value x∗ and sends it to
honest party B (as the receiver). Then, B, in step 2b, picks random values f, v
and inserts them into F1

OLE. Party B inserts (pB(x∗),−s′B(x∗) + f) into F2
OLE.

Recall, s′B is the polynomial which was defined in Equation (4). Party A in step
2c honestly picks a random value, t, and inserts it to F1

OLE that sends c = f · t+v
back to the same party. But, A in the same step, sends r̄A(x∗) · (x∗ − s(B)

1 )−1,
instead of rA(x∗), to F2

OLE that returns the following value to A.

f̄ = r̄A(x∗) · (x∗ − s(B)

1 )−1 · pB(x∗)− s′B(x∗) + f

= r̄A(x∗) · (x∗ − s(B)

1 )−1 ·
(
ωB(x∗) · (x∗ − s(B)

1 ) ·
ö∏

i=2

(x∗ − s(B)

i )
)

︸ ︷︷ ︸
p

B
(x∗)

−s′B(x∗) + f

= r̄A(x∗) ·
(
ωB(x∗) ·

ö∏
i=2

(x∗ − s(B)

i )
)
− s′B(x∗) + f

= −uA(x∗) + f

(6)
Recall, polynomial pB, that was inserted by B, encodes all set elements of B,

including s(B)
1 , whereas polynomial s′B misses that specific element, due to the

party A’s manipulation in Equation (3). However, as it is indicated in Equation
(6), party A has managed to remove x∗ − s(B)

1 from pB(x∗) too. This will let A
escape from being detected, because the result (i.e., f̄ = −uA(x∗) + f) is what
an honest party A would have computed. Malicious party A completes step 2c
honestly, by adding uA(x∗) to f̄ , i.e., it computes f ′ = f̄ + uA(x∗), and sending
f ′ to B, which checks f ′ equals the random value, f , it initially picked in step
2b. By Equation (6), f ′ = f̄ + uA(x∗) = f holds, therefore malicious party A
has managed to pass this verification.

Phase (c): Passing PSI’s Verification. Next, we show how malicious party
A can also pass the verification in the PSI, i.e., in step 2d in Figure 2. Our
focus will be on the “output verification” in the PSI. At a high level, to pass
this verification, A uses a similar trick that is used to pass the verification in
the OPA. Specifically, in step 2a, both parties honestly agree on two values z
and q. Then, in step 2b, party B honestly computes αB, βB, and δB and sends
them to A which ignores the values and skips step 2c. Malicious party A, in step
2d, honestly generates αA = pA(q) and δA = r′A(q); however, instead of setting
βA = rA(q), it sets βA = r̄A(q) · (q− s(B)

1 )−1. It sends αA, δA, and βA to B which
acts honestly in step 2e. In particular, it:

1. evaluates the result polynomial, p∩, at q which yields:



p∩(q) = pA(q)·r′A(q)+pA(q)·rB(q)+
(
ωB(q) ·

ö∏
i=2

(q − s(B)

i )
)
·r̄A(q)+pB(q)·r′B(q)

2. generates value τ as below (given the three messages, sent by party A):

τ = pB(q) · (βA + r′B(q)) + αA · (rB(q) + δA)

=
(
ωB(q) ·

ö∏
i=2

(q − s(B)

i )
)
· r̄A(q) + pB(q) · r′B(q) + αA · rB(q) + αA · δA

=
(
ωB(q) ·

ö∏
i=2

(q − s(B)

i )
)
· r̄A(q) + pB(q) · r′B(q) + pA(q) · rB(q) + pA(q) · r′A(q)

3. checks if p∩(q) equals τ (i.e., p∩(q)
?
= τ) and accepts the result, if the check

passes.

As indicated above, it holds p∩(q) = τ . Hence, malicious party A can pass
the verification in the PSI and convince B to accept the manipulated result.

Deleting Multiple Elements. Now we outline how malicious party A can
delete multiple elements from its counter-party’s set during the PSI. Let S′ =
{s(B)

1 , ..., s(B)

k } be a set of elements that malicious party A wants to delete from
B’s set, where k ≤ m, every element s(B)

i ∈ S′ is picked uniformly at random from
U . In the “set manipulation” phase, in the PSI step 1a, party A picks a random
polynomial r̄A that now has a degree m − k. It performs as before in the rest
of the same step. In step (ii), it constructs a polynomial that now has the form:
k∏

i=1

(x − s(B)
i ). In the same step, it evaluates the polynomial at every element

xj, which yields [
k∏

i=1

(x1 − s(B)
i ), ...,

k∏
i=1

(x2d+1 − s(B)
i )]. It takes the rest of steps

(iii)-(vi) as previously described in the set manipulation phase. The “passing
OPA’s verification” phase remains unchanged with the exception that, in (the

OPA) step 2c, party A now sends r̄A(x∗) ·
k∏

i=1

(x∗− s(B)
i )−1 to F2

OLE. Similarly, the

“passing PSI’s verification” phase remains the same as before, with a difference

that, in (the PSI) step 2d, party A now sets βA = r̄A(q) ·
k∏

i=1

(q − s(B)
i )−1.

5.2 Attack Analysis

A trivial way for an adversary to delete certain elements from the intersection is
to delete those elements from its own contributed set. However, there is a major
difference between this trivial approach and Attack 3, in terms of the amount of
information it learns. Specifically, if the adversary succeeds in Attack 3, it would
conclude that its victim has all the deleted elements in its local set. On the
contrary, it cannot learn such information by taking the above trivial approach.



The adversary always manages to pass the verifications in phases (b) and
(c) if it correctly guesses s(B)

1 . So, its probability of success throughout Attack
3 boils down to correctly guessing that s(B)

1 is in its counter-party’s set. To
compute that probability we can use the same analysis used for Attack 2 (in
Section 4.2). As a result, the probability that adversary successfully deletes a

single element is Pr3 = |S(B)|
|U| ; in general, the probability that it can delete k

elements is Pr′3 =

k−1∏
i=0
|S(B)|−i

|U|k . The adversary can succeed to delete a constant

number of elements, k, with a non-negligible probability when the universe is of
medium or small size, while that probability is negligible when the universe is of
large size. Background knowledge, about the other party’s set, would benefit the
adversary in this attack too. Attack 3 is efficient, as it only imposes 4m+6 extra
modular additions and multiplications to the adversary, when it deletes a single
element. The main two flaws in the protocols’ proofs that led to Attack 3 is that,
in the OPA’s proof, the definition of a malformed input has been limited to only
two cases (i.e., polynomial of incorrect degree or zero-polynomial); also, in the
PSI’s proof, it is assumed the only way the adversary can change an original
value is via the addition operation, so the multiplication is never analysed. We
refer readers to Appendix G.3 for a detailed discussion on the above flaws.

Extension to Multi-party Protocol. The above attack can also be applied to
the multi-party PSI, because it uses the same OPA and verification mechanisms
as the two-party PSI uses. Therefore, each malicious party P ∈ {P1, ..., Pn−1}
can delete an honest central party’s set element(s) or a malicious centralised
party can delete set element(s) of every honest P , without being detected.

5.3 Candidate Mitigation

The primary cause of the vulnerability discussed is the use of point-value polyno-
mial representation in the OPA. Specifically, during polynomial multiplication in
the OPA where polynomials are presented in point-value form, an adversary can
craft its input polynomial such that when it is multiplied by an honest party’s
polynomial, the product polynomial (after interpolation) misses a certain root.
Therefore, it is natural to ask: can the issue be avoided if polynomials in the
coefficient form are used in the OPA? This is indeed the case. Specifically, if the
OPA requires the input polynomials to be in coefficient form, then regardless
of how the adversary constructs its input polynomial, the product of the two
parties’ polynomials, generated in the OPA, preserves both polynomials’ roots.
We refer readers to Appendix E for a formal statement and proof. The above
adjustment imposes to the OPA additional computation cost O(m2) that stems
from multiplying two polynomials in coefficient form.3 Thus, the computation

3 To lower the polynomial multiplication cost toO(m log2m), one may use Fast Fourier
Transform (FFT). However, as FFT uses point-value polynomial representation,
further security analysis is required to ensure the attack would not be enabled again.



complexity of the two-party and multi-party PSIs would be higher. Specifically,
it would be O(m2) for two-party and O(n ·m2) for multi-party PSIs, instead of
O(m · logm) and O(n ·m · logm) as in the original protocol [21].

6 Related Work

PSIs were first introduced by Freedman et al. [17] that were mainly based on
Paillier homomorphic encryption and polynomial representation of sets. Since
then, numerous PSIs have been proposed. They can be broadly divided into
traditional and delegated categories.

In traditional PSIs, e.g., protocols in [6, 12, 13, 17, 21–24, 31, 32, 40], data own-
ers interactively compute the result using their local data. Currently, the protocol
of Kolesnikov et al. [31] is the fastest two-party PSI, which is secure against a
semi-honest (or passive) adversary. It relies on an oblivious pseudorandom func-
tion and Cuckoo hashing. Recently, Pinkas et al. [33] proposed an efficient PSI
that is secure against a stronger (i.e., malicious/active) adversary. It is based on
Cuckoo hashing, oblivious transfer, and a new data structure called probe-and-
XOR of strings. Moreover, there have been efforts to improve the communication
cost in PSIs, through fully homomorphic encryption and batching techniques [13]
and additive homomorphic encryption, oblivious linear function evaluation, and
polynomial representation [22]. Very recently, a new PSI has been proposed that
achieves a better balance between communication and computation costs [12].
It relies on oblivious transfer, hashing, and symmetric-key primitives. Since the
above schemes support only two parties, researchers proposed multi-party PSIs
to let more than two parties participate. The multi-party PSIs in [23, 24, 32] have
been designed to be secure against passive adversaries. To date, the protocol of
Kolesnikov et al. [31] is the most efficient multi-party PSI secure against pas-
sive adversaries. Also, the multi-party PSIs in [6, 21, 40] have been designed to
remain secure against active adversaries. There are two PSIs proposed in [40].
As their authors admit, one of them leaks (non-trivial) information and another
one requires the involvement of two non-colluding servers, which is a strong as-
sumption. Also, as stated by Efraim et al., the PSI in [6] offers a weaker security
guarantee and has a higher communication cost than the multi-party PSI in [21]
does. To date, the multi-party protocol in [21] is the most efficient multi-party
PSI designed to be secure against active adversaries.

In delegated PSIs, e.g., in [1–4, 28, 39, 41], an additional third party is in-
volved to perform a part of the intersection computation and/or to store parties’
encrypted sets. They can be divided into schemes that support (a) one-off del-
egation, e.g., in [28, 41], that requires parties to re-encode their data locally for
each computation and (b) repeated delegation, e.g., in [1–4, 39], that lets parties
reuse their outsourced data without locally re-encoding it for each computation.

7 Conclusion and Future Work

Private set intersection (PSI) is a vital protocol with various real-world applica-
tions. At Eurocrypt 2019, Gosh and Nilges [21] proposed three efficient PSIs: (a)



two-party, (b) threshold, and (c) multi-party. To date, their multi-party protocol
is the most efficient multi-party PSI designed to remain secure against active ad-
versaries. In this work, we identified three attacks that can be mounted on all of
these PSIs. The attacks let an adversary (1) learn the intersection while making
its counter-party believe the intersection is empty, (2) learn a certain element of
the honest party’s set beyond the intersection, and (3) delete multiple elements
of its counter-party’s input set. We also identified various flaws in the protocols’
design and security proofs and proposed a set of mitigations.

Our observation is that in all three attacks an adversary exploits two features
of the protocols’ design; namely, (a) the polynomial representation of sets and
(b) polynomial-based consistency check. Our analysis indicated that the attacks
could have been detected if, in the protocols’ security proofs, there was a com-
prehensive study of (i) all checks, (ii) simulators’ design, and (iii) malformed
inputs’ definition. We conclude that special care should be taken in the design
and proof of PSIs that use the combination of the two aforementioned features.

Future research could investigate how the security of other protocols (e.g.,
noisy polynomial addition in [22]) that already used the schemes proposed in [21]
could be affected by our findings. While our proposed mitigations add relatively
low cost to the two-party PSI, they scale quadratically with the number of
participants in the multi-party case. Designing efficient multi-party PSIs, secure
against active adversaries, with linear costs is another interesting research line.
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A OLE’s Ideal Functionality

As previously stated, Ghosh et al. [21] define and prove their proposed PSIs and
the primitives they use in the UC framework [11]. Informally, in this framework,
the security of a protocol is shown to hold by comparing a real protocol in the
real world with an ideal functionality F in the ideal world. The functionality
must accurately capture the security requirements of the protocol and is secure
per definition. An environment Z is plugged either to the real or ideal protocol
and has to distinguish the two worlds. The environment can corrupt parties.
To guarantee the security, there must exist an ideal world adversary, called a
simulator, that produces the protocol’s transcript indistinguishable from the
real protocol, even if the environment corrupts a party. We say the protocol UC-
realises the functionality if for every adversary in the real world there exists a
simulator such that all environments Z cannot distinguish the transcripts of the
parties’ outputs. Once a protocol is defined and proven secure in the UC model,
other protocols, that use it as a subroutine, can securely “replace” it by calling
its functionality instead.

Recall, there are two parties involved in OLE; namely, sender and receiver.
In OLE, the sender has two inputs a, b ∈ F and the receiver has input c ∈ F,
the protocol allows the receiver to learn only s = a · c+ b ∈ F, while the sender
learns nothing. Figure 3 restates the OLE’s functionality, taken from [21].

1. Upon receiving a message (inputS, (a, b)) from the sender, where a, b ∈ F, verify
that there is no tuple stored; otherwise, ignore that message. Store a and b and
send a message (input) to the adversary, A.

2. Upon receiving a message (inputR, c) from the receiver, where c ∈ F, verify that
there is no tuple stored; otherwise, ignore the message. Store c and send a message
(input) to A.

3. Upon receiving a message (deliver, S) from A, check if both (a, b) and c have been
stored; otherwise, ignore that message. Send message (delivered) to the sender.

4. Upon receiving a message (deliver, R) from A, check if both (a, b) and c have been
stored; otherwise, ignore that message. Set s = a · c+ b and send (output, s) to the
receiver.

Fig. 3: Oblivious linear function evaluation (OLE) ideal functionality, FOLE [21].

B Enhanced OLE’s Ideal Functionality And Protocol

The PSIs in [21] also use an enhanced version of the OLE. The enhanced OLE
ensures that the receiver cannot learn anything about the sender’s inputs, in
the case where it sets its input to 0, i.e., c = 0. The enhanced OLE’s ideal
functionality (denoted by FOLE+) and protocol (denoted by OLE+) are presented
in Figures 4 and 5 respectively.



1. Upon receiving a message (inputS, (a, b)) from the sender, where a, b ∈ F, verify
that there is no tuple stored; otherwise, ignore that message. Store a and b and
send a message (input) to the adversary, A.

2. Upon receiving a message (inputR, c) from the receiver, where c ∈ F, verify that
there is no value stored; otherwise, ignore the message. Store c and send a message
(input) to A.

3. Upon receiving a message (deliver) from A, check if both (a, b) and c have been
stored; otherwise, ignore that message. If x 6= 0, set s = a · c+ b. Otherwise, pick

a uniformly random value, s
$← F, and send (output, s) to the receiver. Ignore all

further messages.

Fig. 4: Enhanced oblivious linear function evaluation (OLE+) ideal functionality,
FOLE+ [21].

1. Receiver (input c ∈ F): Pick a random value, r
$← F, and send (inputS, (c−1, r)) to

the first FOLE.
2. Sender (input a, b ∈ F): Pick a random value, u

$← F, and send (inputR, u) to the
first FOLE, to learn t = c−1 ·u+ r. Send (inputS, (t+a, b−u)) to the second FOLE.

3. Receiver: Send (inputR, c) to the second FOLE and obtain k = (t+a) · c+(b−u) =
a · c+ b+ r · c. Output s = k − r · c.

Fig. 5: Enhanced oblivious linear function evaluation (OLE+) protocol [21].

C OPA’s Ideal Functionality

Figure 6 restates the ideal functionality of oblivious polynomial addition (OPA)
proposed in [21].

The functionality is implicitly parameterized by d signifying the maximal input degree.

1. Upon receiving a message (inputS, (u, r)) from the sender, where u, r ∈ F[X],
verify whether

– r 6= 0

–
(
deg(r) ≤ d ∧ deg(u) = 2d

)
∨
(
deg(r) = d ∧ deg(u) ≤ 2d

)
and ignore that message if the checks are not passed. If the checks are passed, then
store (u, r) and send (input) to the adversary, A.

2. Upon receiving a message (inputR,p) from the receiver where p ∈ F[X], check
whether deg(p) ≤ d and p 6= 0. If not, ignore that message. Otherwise, retrieve
(u, r), compute s = r · p + u, and send (res, s) to the receiver. Ignore all further
messages.

Fig. 6: Oblivious polynomial addition (OPA) ideal functionality, FOPA [21].



D Multi-party PSI’s Mitigation Against Attack 1

Recall that in Section 3.3 we proposed a set of adjustments that can be applied
to the two-party PSI to eliminate the source of the issue that led to Attack 1.
In this section, we outline how those adjustments can be applied to the multi-
party PSI, presented in Figure 10 in [21]. The idea is similar to the one used
for the two-party PSI, with a primary difference that now each party needs to
re-randomise input polynomials of all of its counter-parties. The main changes
are as follows. In step 2, P0 sets p̄0 = p0 · r′0 and picks random polynomials ui

0

of degree 3m (instead of 2m). In step 2.2, it inserts p̄0 (instead of p0) to F (i,2)
OPA

which returns si
0 = p̄0 ·ri +ui to it. In step 3, each party Pi ∈ {P1, ..., Pn−1} picks

a random polynomial ui of degree 3m (instead of 2m) and additional random
polynomials: uj

i and rj
i , where j ∈ [n−1], j 6= i, deg(uj

i) = 3m, and deg(rj
i) = m.

In the same step, it computes p̄i = pi · r′i. In step 3.1, it inserts p̄i (instead of
pi) to F (i,1)

OPA that outputs si = p̄i · ri
0 + ui

0 to party Pi. In the same step, it
takes the following extra sub-steps, for all j: inserts p̄i to F (i,1,j)

OPA and receives
sij = p̄i · ri

j + ui
j. In step 3.2, it takes the following additional sub-steps, for all

j: inserts rj
i and uj

i into F (i,2,j)
OPA . In step 3.3, party Pi sets

s′i = si +

n−1∑
j=1
j 6=i

sij − ui −
n−1∑
j=1
j 6=i

uj

i +

n−1∑
j=1
j 6=i

vij

In step 4, P0 computes p∩ =
n−1∑
i=1

(s′i + si
0 − ui

0). Let z be a random value

generated in step 5.1. In step 5.2, every Pi ∈ {P0, ..., Pn−1} computes αi = p̄i(z)
and for all j ∈ [n − 1], it generates values δj

i = rj
i(z), where j 6= i. Moreover,

every Pi ∈ {P1, ..., Pn−1} computes value βi = ri(z). Next, each party commits
to the values it generated and broadcasts them. To clarify, there are no other
values generated in this step. In step 5.3, each party opens its commitment and
verifies other parties commitment. If accepted, then in the same step, each party
checks: (

n−1∑
i=1

(αi ·
n−1∑
j=0
j 6=i

δi

j)

)
+

(
α0 ·

n−1∑
i=1

βi

)
?
= p∩(z)

Below, we briefly explain why all parties needed to randomise each others’
input polynomials. As stated previously, non-randomised pI ·r′I must not be part
of the result polynomial. Nevertheless, simply removing it from the multi-party
protocol provides a new opportunity for another attack. In this case, the source
of the issue would be that the protocol requires only the central party, P0, to
randomise other parties’ input polynomials. This allows malicious P0 (who pos-
sesses some background knowledge) to mount an attack. Specifically, malicious
P0 who knows that all parties except P1 have a certain set element, say s∗, could
insert that element into (the roots of) its random polynomial r1

0 that will be mul-
tiplied by party P1’s input polynomial p̄1, in step 3.1. Consequently, this makes



s∗ appear in the result polynomial, so all other honest parties (except P1) would
consider s∗ as a part of the intersection. In contrast, if p̄1 is randomised by all
other parties, then this attack would not work, as long as one of those parties
is honest. Because that honest party has honestly randomised p̄1 by using truly
random polynomials (that would not have s∗ as a root with a high probability).

Accordingly, the computation complexity of the multi-party PSI increases
from O(nm logm) to O(n2m) and its communication cost increases by a constant
factor, as it already was quadratic. Since the threshold multi-party PSI makes
a black-box call to the multi-party PSI, the above analysis and adjustments can
be applied to it as well.

E Discussion On The Mitigation Of Attack 3

The key idea behind the mitigation of Attack 3 is the below theorem. Informally,
it states that the product of two arbitrary polynomials, in coefficient form, is a
polynomial whose roots are the union of the two polynomials.

Theorem 2. Let p and q be two arbitrary non-constant polynomials of degree d
and d′ respectively, such that p,q ∈ F[X] and they are in coefficient form. Then,
the product of the two polynomials is a polynomial whose roots include precisely
the two polynomials’ roots.

Proof. Let P = {p1, ..., pt} and Q = {q1, ..., qt′} be the roots of polynomials p
and q respectively. By the Polynomial Remainder Theorem, polynomials p and

q can be written as p(x) = g(x) ·
t∏

i=1

(x − pi) and q(x) = g′(x) ·
t′∏

i=1

(x − qi)

respectively, where g(x) has degree d − t and g′(x) has degree d′ − t′. Let the
product of the two polynomials be r(x) = p(x) · q(x). For every pi ∈ P , it holds
that r(pi) = 0. Because (a) there exists no non-constant polynomial in F[X] that
has a multiplicative inverse (so it could cancel out factor (x−pi) of p(x)) and (b)
pi is a root of p(x). The same argument can be used to show for every qi ∈ Q,
it holds that r(qi) = 0. Thus, r(x) preserves roots of both p and q. Moreover, r
does not have any other roots (than P and Q). In particular, if r(α) = 0, then
p(α) · q(α) = 0. Since there is no non-trivial divisors of zero in F[X] (as it is an
integral domain), it must hold that either p(α) = 0 or q(α) = 0. Hence, α ∈ P
or α ∈ Q.

Informally, as illustrated in Theorem 1, a set of y-coordinates of a polynomial
can be multiplied by a set of non-zero values, such that the polynomial inter-
polated from the product misses a specific root of the original polynomial. The
same idea is used in Section 5 by an adversary to remove an element from its
counter-party’s set, without being detected. Nevertheless, as shown in Theorem
2, when a polynomial, e.g., µ(x), is in coefficient form, and multiplied by another
arbitrary non-zero polynomial, the result always preserves the two polynomials’
roots. So, unlike the point-value representation, the coefficient representation
does not let roots of a polynomial be removed via multiplication (in the OPA).



F Roots of Randomised Polynomial

Theorem 3. Let {x1, . . . , xh} be a set of elements in F and p be a random
polynomial in F[X] of degree m ≥ h. Then, the probability that all elements
x1, . . . , xh are roots of p is 1

|F|h .

Proof. The number of polynomials in F[X] of degree m is (|F| − 1) · |F|m. This
holds because for a polynomial g(x) = am · xm + · · ·+ a1 · x+ a0, where am 6= 0,
there are |F| − 1 possible values for am and |F| possible values for am−1, . . . , a0.

We will compute the number of polynomials in F[X] of degree m that have
all elements x1, . . . , xh as roots. By the Polynomial Remainder Theorem, such

a polynomial g(x) can be written as g(x) = q(x) ·
h∏

i=1

(x − xi), where q(x) is

a polynomial of degree m − h. As before, we can show that the number of
polynomials in F[X] of degree m − h is (|F| − 1) · |F|m−h. In addition, because
F[X] is an integral domain, for any two distinct polynomials q(x),q′(x) of degree

m−h, it holds that q(x) ·
h∏

i=1

(x−xi) 6= q′(x) ·
h∏

i=1

(x−xi). As a result, the number

of polynomials in F[X] of degree m that have all elements x1, . . . , xh as roots is
also (|F| − 1) · |F|m−h. By the above analysis, the probability that all elements
x1, . . . , xh are roots of the random polynomial p of degree m is

(|F| − 1) · |F|m−h

(|F| − 1) · |F|m
=

1

|F|h
.

G Identified Flaws In The Security Proofs

In this section, we present a set of flaws we identified in the security proofs of the
paper’s conference [21] and full [20] versions. These flaws potentially made the
three attacks undetected by the paper’s authors. We categorise the flaws in three
classes based on their relevance to each attack we pointed out. In this section,
for the sake of simplicity, we exclude hat symbol, “ ˆ ”, used in the proofs.

G.1 Class 1: Not All Checks Have Been Included

In this section, we describe a flaw in the proof of two-party PSI (on page 20 in the
paper’s full version [20]) that lets the environment use Attack 1 to distinguish
the two worlds. The issue is that, the proof for the case where party B is corrupt
does not consider the situation where δ∗B 6= r′B(z). Before we elaborate on it, we
highlight two typos in “Hybrid” 1; namely, α∗A 6= pA(z) and β∗A 6= rA(z) should
have been α∗B 6= pB(z) and β∗B 6= rB(z) respectively, because the proof is for
corrupt party B. In Hybrid 2, it is stated that “an environment distinguishing
Hybrid 1 and 2 must manage to send p∗∩ such that:

p∗∩ 6= pA · (rB + r′A) + pB · (r′B + rA)



while passing the check in Step 5 [of figure 9] with non-negligible probability.”
The proof shows that with a high probability the check fails only in the cases

where α∗B 6= pB(z) and β∗B 6= rB(z); therefore, δ∗B 6= r′B(z) has been left out of
the proof, but it should have been captured and analysed in either Hybrid 1 or
Hybrid 2. The lack of such analysis leads to the below issue.

As we have already shown, the check does not fail for certain p∩ and δB such
that p∩ 6= pA ·(rB +r′A)+pB ·(r′B +rA) and δB 6= r′B(z). So the adversary can pass
the check with a high probability in the real world (or Hybrid 0). The simulator,
in Hybrid 2, detects this inconsistency (i.e., δ∗B 6= r′B(z)) because, according to
Figure 11 in [20], it has extracted r′B which allows it to detect when δ∗B 6= r′B(z).
In contrast, the simulator in Hybrid 1 cannot detect it, because it only aborts if
α∗B 6= pB(z) or β∗B 6= rB(z). Thus, Hybrids 1 and 2 (and similarly Hybrids 0 and
2) are distinguishable by the environment.

G.2 Class 2: Incomplete Simulator

In the proof of Lemma 4.1, i.e., OPA’s security, in the paper’s conference version
[21], it is stated that “the only possibility for an environment to distinguish
between the simulation and the real protocol is by succeeding in answering the
check while using a malformed input, i.e. a polynomial of incorrect degree or 0-
polynomials.” We argue that this is not the only possible case. As we indicated
in the description of Attack 2, it is possible the adversary (in the real world) in
the “consistency check” phase, deviates from the protocol (i.e., steps 2a and 2c)
and still passes the verification. This allows the environment to distinguish the
two worlds. Below we elaborate on that.

Note, the proof should have included the simulation of the “consistency
check” phase, but it has been left out of the proof (probably because the proof
is just a sketch in both conference and full versions). Accordingly, the proof does
not capture the case where w′ of the form w′ 6= r(x′∗) is used by the adversary.
In the simulation of the consistency check, the simulator can detect when it is
given w′ 6= r(x′∗), as it has already extracted polynomial r from the adversary.
But, in the real world, as we have shown, the adversary can pass the check when
w′ 6= r(x′∗) and a certain value, x′∗, is used in this phase. Hence, the environ-
ment can distinguish the two worlds. This issue arises because the proof does
not analyse the case where the check, in the consistency check phase, is passed
but w′ 6= r(x′∗) is used in this phase.

G.3 Class 3: Incomplete Definition Of Malformed Input

Recall, the proof of Lemma 4.1 (i.e., OPA’s security in [21]) considers a mal-
formed input if an input polynomial is (i) of incorrect degree or (ii) zero. The
issue is that the proof shows only in these two cases the environment cannot
distinguish the two worlds. We argue that an input can be malformed without
satisfying conditions (i) or (ii). While presenting our argument, we identify an-
other issue in the proof; in short, we show even if the input polynomial is of
incorrect degree, the environment can distinguish the two worlds.



Similar to the description of Attack 3, let a corrupt sender (for all j ∈ [2d+1])
send q3,j = r̄A(xj) · (xj − s(B)

1 )−1 to F (j)

OLE+ in the ideal world. This allows the
simulator to obtains all q3,j and interpolate a polynomial, q. There would be two
cases: (1) deg(q) > d, or (2) deg(q) ≤ d.

In case (1), the simulator aborts according to the proof. But in the real
protocol (in step 1b of Figure 1) the honest party never aborts, after checking
deg(s) ≤ 2d. Because, in general, polynomial s interpolated from 2d + 1 pairs
(xj, sj) always has degree at most 2d, according to Theorem 4. So, when the input
polynomial is of incorrect degree, i.e., case (1), the environment can distinguish
the two worlds. The issue stems from the requirement that the simulator has to
abort when deg(q) > d, and the check in the real world protocol, i.e., deg(s) ≤
2d), that always passes.

Now we move on to case (2). In the ideal world, in the consistency check
phase, the simulator of the OPA is given random value x∗ and w′′ = r̄A(x∗) ·
(x∗ − s(B)

1 )−1 and wants to check w′′
?
= q(x∗). Note that the equation may not

always hold; briefly, because factors (xj−s(B)
1 )−1 of y-coordinates q3,j from which

q was interpolated, are not directly generated by evaluating a polynomial at xj’s.
The probability that w′′ = q(x∗) depends on the choice of x∗. If the equation
holds, then the simulator does not abort. Similarly, the honest party does not
abort, because as shown in the “passing OPA’s verification” phase in Section
5.1, the adversary can pass the consistency check phase with a non-negligible
probability. This is problematic because the attack has been successfully carried
out without being detected even by the simulator, which means the simulator has
not been constructed correctly to take the issue into account. If the equation does
not hold, i.e., w′′ 6= q(x∗), the simulator aborts, but as we already stated, the
honest party does not abort, as the adversary can pass the consistency check.
Therefore, the environment can distinguish the two worlds. This issue arises
because, in the proof, the definition of a malformed input has been limited to
only the above conditions (i) and (ii), and the proof never analyses the case
where the check is passed while w′′ that is not the result of evaluating truly
random polynomial r at x′∗ (i.e., w′′ 6= r(x′∗)) is inserted into F2

OLE.

Furthermore, the adversary who mounts Attack 3, can pass the PSI’s verifi-
cation too. Briefly, the issue is that in the PSI’s proof (i.e., proof of Theorem 5.1
in [21]) when party A is corrupt, the case where βA is not the result of evaluating
truly random polynomial rA at z (i.e., βA 6= rA(z)) is never analysed in detail
and also it is assumed that the only way the adversary can change the original
value is via a modular addition (i.e., αA + e); therefore, a modular multiplica-
tion is never considered as a part of the attack. Nevertheless, as we showed, the
adversary can multiply its input y-coordinates by certain values to affect the
result’s correctness and pass the verification.



H Attack 3 Theorems

We first restate Theorem 4 that will be used by the main one, i.e., Theorem 1.
Informally, Theorem 4 states that for any v non-zero distinct x-y-coordinates
there exists a unique polynomial of degree at most v − 1.

Theorem 4. (Uniqueness of interpolating polynomial [34]) Let #»x = [x1, . . . , xv]
be a vector of non-zero distinct elements. For v arbitrary values: y1, . . . , yv there
is a unique polynomial: τ , of degree at most v − 1 such that: ∀j, 1 ≤ j ≤ v :
τ (xj) = yj, where xj, yj ∈ F.

Now we move on to the main theorem. Informally, Theorem 1 states that
a set of y-coordinates of a polynomial can be multiplied by a set of non-zero
values, such that the polynomial interpolated from the product misses a specific
root of the original polynomial.

Theorem 1. Let #»x = [x1, . . . , xv] be a vector of non-zero distinct elements.

Let µ =
ö∏

i=1

(x − ei) ∈ F[X] be a degree ö < v polynomial with ö distinct roots

e1, . . . , eö, and let µj = µ(xj), where 1 ≤ j ≤ v. For some c ∈ [ö] such that
ec /∈ {x1, . . . , xv}, let µ′ be a degree ö − 1 polynomial interpolated from pairs
(x1, µ1 · (x1 − ec)−1), ..., (xv, µv · (xv − ec)−1). Then, µ′ will not have ec as root,
i.e. µ′(ec) 6= 0.

Proof. For the sake of simplicity and without loss of generality, let c = 1. We can

rewrite polynomial µ as µ(x) = (x− e1) ·
ö∏

i=2

(x− ei). Then, every µj (1 ≤ j ≤ v)

can be written as: µj = (xj−e1)·
ö∏

i=2

(xj−ei). Accordingly, for every j, the product

αj := µj · (xj − e1)−1 has the form: αj = µj · (xj − e1)−1 =
ö∏

i=2

(xj − ei). Let µ′′

be a degree ö− 1 polynomial with ö− 1 distinct roots identical to the roots of µ
excluding e1, i.e., µ′′(e1) 6= 0. By the Polynomial Remainder Theorem, µ′′ can

be written as µ′′(x) = K ·
ö∏

i=2

(x− ei), where K ∈ F \ {0}. So, it holds that

∀j ∈ [v] : µ′′(xj) = K ·
ö∏

i=2

(xj − ei) = K · αj

This implies that µ′′ is a degree ö− 1 polynomial interpolated from (x1,K ·
α1), . . . , (xv,K · αv). By its definition, the polynomial µ′ is interpolated from
the pairs (x1, α1), . . . , (xv, αv). Thus, K · µ′ is another degree ö − 1 polynomial
interpolated from (x1,K · α1), . . . , (xv,K · αv). Due to Theorem 4, we have that
µ′′ = K · µ′, so µ′′(e1) = K · µ′(e1) ⇒ µ′(e1) = K−1 · µ′′(e1). We also know
that K−1 6= 0 and µ′′(e1) 6= 0. Since F is an integral domain, it follows that
µ′(e1) = K−1 · µ′′(e1) 6= 0.


