
Covert Channels for Collusion in Online

Computer Games

Steven J. Murdoch and Piotr Zieliński

University of Cambridge, Computer Laboratory,
15 JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom

http://www.cl.cam.ac.uk/users/{sjm217, pz215}/

Abstract. Collusion between partners in Contract Bridge is an oft-used
example in cryptography papers and an interesting topic for the develop-
ment of covert channels. In this paper, a different type of collusion is dis-
cussed, where the parties colluding are not part of one team, but instead
are multiple independent players, acting together in order to achieve a
result that none of them are capable of achieving by themselves. Poten-
tial advantages and defences against collusion are discussed. Techniques
designed for low-probability-of-intercept spread spectrum radio and mul-
tilevel secure systems are also applied in developing covert channels suit-
able for use in games. An example is given where these techniques were
successfully applied in practice, in order to win an online programming
competition. Finally, suggestions for further work are explored, including
exploiting similarities between competition design and the optimisation
of voting systems.

1 Introduction

In many games, a player who is able to collude with other participants can gain
a significant advantage. In this paper we explore how, in a tournament, a player
may surreptitiously authenticate players who may be colluded with, what actions
can be taken and what advantage this may gain him.

One of the games for which much research in collusion has been performed
is Bridge. Here, systems for transmitting information between partners during
the bidding stage are legal and can provide a great advantage to the team more
adept in their usage. These schemes typically provide a means by which one
player can encode information about his hand in the cards that he plays. His
partner (who he is not allowed to communicate with through any other means)
can then make a more precise contract.

One complication in Bridge is that while covert channels are permitted by
the rules, if the partner of a player making a bid is asked what the meaning of
a bid is, then he must answer truthfully [1, 2], so the information sent through
the channel cannot be secret. However, the two members of a team do share a
secret, e.g. if one player holds all the aces then he knows that his partner holds
none, but the opposing team does not know this [3]. If this secret is used as a
key, then it is legal for the recipient of the information to only tell what the bid

J. Fridrich (Ed.): IH 2004, LNCS 3200, pp. 355–369, 2004.
� Springer-Verlag Berlin Heidelberg 2004



356 Steven J. Murdoch and Piotr Zieliński

means in isolation. He does not need to tell his opponent what the bid means
when combined with the knowledge of the player’s own hand.

In Bridge, the collusion is between two members of a team, where commu-
nication, other than through bidding, is not permitted, however, in Section 2
we discuss the different situation, where the colluding parties are considered to
be independent players. Here, communication is simply unexpected, since in a
competition it is normal for each player to try to optimise his own performance,
so there would be no need for communication with other opponents. In this pa-
per, we examine the situation where several independent players cannot win the
competition acting by themselves, but one of them can win if they collude. If the
value of the prize can somehow be divided up between the winner and colluders,
this option is attractive for all parties.

In order for collusion to work, there must be some means of communicating. If
collusion is not expected, then it may be the case that communication is easy, but
the case where it is banned is both plausible and more interesting. In Section 3,
we discuss how communication can be established, and in particular we show
how covert channels can be used for authentication. A number of possibilities
are presented and compared, including a scheme which draws on techniques used
in low-probability-of-intercept spread spectrum radio to increase the confidence
that authentication has been performed correctly.

In Section 4, an example of where these techniques were successfully applied
is given. This was a online programming competition where contestants were re-
quired to write a program to play Connect-4 against the other programs entered.
We found that it was in fact impossible to guarantee a win in any individual
game, however by developing a collusion based system it was possible to win the
contest subject to reasonable assumptions about other contestants.

Finally, in Section 5, defences against such types of collusion are discussed.
These include prevention, detection, and modifying the competition so that the
benefits of collusion are reduced. One option considered is to use the similarities
between elections and competitions so as to design better tournament structures.

2 Competition Structures

The type of competition dictates how effective collusion can be and also how
it can best be used. In this section, we introduce two simple but popular tour-
nament arrangements (league and knockout) and show how collusion can be
exploited. In Section 4, these two arrangements are combined to form the hy-
brid structure that the techniques described in this paper were designed to win.

2.1 League Tournaments

In a typical league, each of the n players competes against every other player,
resulting in n(n− 1)/2 matches. The structure of a game is not important, only
that there are two participants and it may lead to three outcomes: win, lose, or



Covert Channels for Collusion in Online Computer Games 357

Table 1. Summary of winners in matches between Fox, Chicken and Optimal players
(“—” denotes a draw)

Fox Chicken Optimal

Fox — Fox —
Chicken Fox — —
Optimal — — —

draw. It is almost universal for a win to gain a player more points than a draw
and a draw to gain the player more points than a loss.

Without loss of generality, we can assume that the game is fair, that is, nei-
ther of the players has an advantage. This is because any game can be made
fair by playing it twice with the roles of the players exchanged the second time.
Fairness implies that a perfect player must draw against itself, therefore, no win-
ning strategy exists for the player. Since the opponent has no winning strategy
either, the player must have a strategy that guarantees at least a draw.

In order to calculate a lower bound for the benefit of collusion, we assume the
worst case scenario — that non-colluding, independent opponents are optimal,
i.e. they will win a match where possible and draw otherwise. Similarly, we make
conservative assumptions for colluding players, namely that they will never lose,
but also will never win against independent players. If every player was optimal,
then each will gain the same number of points. However, this assumes that every
player plays as well as possible all of the time. Where some colluding players
(Chickens) aim to draw against all players except that they lose to colluding
players (Foxes), then Foxes will get more points than would otherwise be possible.

In a competition, let us assume there are x Optimal players and c Chickens
colluding with f Foxes whom the Chickens want to win. A match between an
Optimal player and a Chicken, or between two Chickens, will result in a draw
since the Chicken will play to draw. However, a match between a Fox and a
Chicken will result in a win for the Fox, since the Chicken will recognise that it
is playing a Fox. A win will gain the winner pw points, a draw pd points, and a
loss pl points (as noted above, pw > pd > pl). We assume each player will also
compete against himself and draw. This is summarised in Table 1.

In this competition, each of the x Optimal players will get pdx + pdc + pdf
points, each Chicken will get pdx + pdc + plf points, and each Fox will get
pdx + pwc + pdf . It can then be seen that under these assumptions a colluding
player will score higher in the competition than the Optimal player since c ≥ 1.

2.2 Knockout Tournaments

For knockout tournaments, the impact of collusion is much less than for league
tournaments. The result of a match must be a win for one player so as to decide
who will continue to the next round. Typically this will require some kind of
tie-breaking system, such as the penalty shootout in soccer.



358 Steven J. Murdoch and Piotr Zieliński

Alice
Bob

Carol Dave

be
at

s beats

beats

(a)

Alice

Alice Carol

Dave

Alice Dave

Dave

Dave Bob

(b)

Carol

Alice Carol

Carol

Carol Dave

Bob

Carol Bob

(c)

Fig. 1. Knockout tournament collusion example

The only way for a player to win in all arrangements of initial matches is if he
can beat all other participants. Likewise if a player can beat all other players then
he will win the competition regardless of the initial arrangement. However, it
may be advantageous for a player to influence the arrangement of initial matches
if there are cycles in the directed graph of game results, for example Figure 1(a).
Here Alice and Bob are equivalent players, who both can beat Carol but will be
beaten by Dave. Also Carol can beat Dave. In the scenario shown in Figure 1(b),
if Alice plays as well as possible, then while Alice will win the first round she will
be eliminated by Dave in the next round. Then Dave will eliminate Bob and go
on to win the tournament. However, if Alice and Bob collude then the result can
be as shown in Figure 1(c), allowing Bob to win. Alice can deliberately lose the
first match and so Carol will go through. In the next round, Carol will eliminate
Dave but in the final round Bob can beat Carol. This example shows that there
are cases where, if a player is colluding with others in a knockout tournament,
it may be in the best interest of the collusion group for one member to play less
well than is possible.

Unlike the league tournament, it is clear that the result of a match between
co-colluders does not contribute to the final result, if we assume that all players
colluding with each other have equal abilities. However, in situations like those
described above, it is useful for a colluder to lose against an opponent who
possesses an ability that the colluders do not. We do not explore this further,
and in the rest of this paper we concentrate on league-like tournaments.

3 Authentication Mechanisms

To manipulate a knockout tournament it is necessary for the abilities of the
opponents to be known in advance, however, in a league all that is necessary
is for colluding players perform normally against independent opponents, but
selectively play poorly against other colluding players.



Covert Channels for Collusion in Online Computer Games 359

In order to identify a colluding player when the order of games is not known,
there must be some form of authentication that happens before or during each
game. This should be reliable and must identify the case where one player must
lose before the result of the game is decided.

It may be the case that communication is easy, for example in a face-to-
face game the players may recognise each other or be allowed to speak to each
other. If the players are computer programs (the case which the rest of this
paper will concentrate on), a standard program-to-program authentication can
be accomplished.

However, there may be times when an overt channel is either not possible
because of the constraints of the competition or not permitted by the competition
rules. In these situations, a covert channel can be used. There are a variety of
techniques developed for such communication channels, however, the majority
of them are described in the literature for the analysis of multi-level secure
computer systems (many of which are summarised in the “Light pink book” [4]),
so while not directly relevant, they can be modified for use within games.

3.1 Timing

In the literature on multi-level secure systems, one frequent way to create a covert
channel is for a program to signal to another by varying some kind of system-wide
property. For example, this could be modifying the CPU load [5], hence changing
scheduling patterns, or it could be modifying timing of acknowledgements of
messages which may flow in only one way [6]. These techniques could be used
directly, but there are also timing based covert channels that are specific to
games.

One such channel would be to use the timing of moves to carry information
by causing the sender to delay making a move and the recipient to measure this
delay. Such schemes are easy to create and can have a relatively high bandwidth.
However, if the transport mechanism is affected by latency and/or jitter, then
this covert channel may be unreliable or even eliminated completely.

Where the latency is fixed, this can be easily cancelled out, but jitter is more
problematic. If the jitter is sufficiently small, then it can be removed, at the cost
of reducing bandwidth. However, the rules are likely to place an upper bound
on the maximum time to make a move, and so fix the maximum possible delay.
If the jitter is of similar magnitude to this limit, then the bandwidth of the
channel will be very small. If the CPU time to make a move is limited by the
competition rules rather than wall clock time (the amount of time to have passed
in the real world), then the maximum delay can be fairly large, since in most
operating systems the time that a program is paused is not counted towards the
CPU time.

One form of jitter specific to a competition is if the time for a move to be
sent is fixed to a value greater than the maximum allowable time for the delay.
This may occur if the competition is to be shown live and the organisers wish
to slow the competition to a speed that humans can watch. If this is done, then
the move timing covert channel would be eliminated.



360 Steven J. Murdoch and Piotr Zieliński

3.2 Choice of Equivalent Moves

The timing based mechanisms mentioned above are possibly unreliable in the
presence of jitter. An alternative to this is to encode the authentication data in
the moves themselves. In person-to-person games, this could be, for example,
the way the pieces of a board game are held, or the place in which a card is put
down in a card game (this is why there are complex physical arrangements in
Bridge tournaments to prevent such communication). In contrast, for the case
of an online competition the move will likely be expressed in an unambiguous
form hence will allow no extra information to be carried in a side channel.

At a stage in the game, if there is more than one move which can be shown
to not change the outcome of the game when compared to the best move, then
this fact can be used to transmit information. One possible way for this to
be achieved is by ordering the n equivalent moves. The order chosen can be
arbitrary, but often there is an obvious solution, for example in the Connect-4
situation described in Section 4, ordering moves by column number would be
sensible. In order to send r ∈ {1, . . . , n} then the rth move is chosen. After
receiving a move from its opponent, a player can identify which move, out of the
opponents possible moves, was chosen and hence identify r.

3.3 Analysis of Authentication Mechanisms

In order for a collusion strategy to succeed, a reliable covert channel must be
established to allow a Chicken to identify when it is playing a Fox and thus
should deliberately lose.

For the simple case where a Chicken needs to identify whether its opponent
is a Fox or not (Section 2.1), the goal of the channel can be viewed as being able
to transmit a single bit while the result of the game is still undetermined. While
the required capacity of the channel is low, the reliability requirements are high,
since a false positive will result in a Chicken losing to an independent opponent
and so reduce the chance of the Fox winning.

Much research on bandwidth estimation of covert channels, for example [7],
has concentrated on finding upper bounds for the data rate of the channels.
These techniques can be used to design a coding system which approaches these
upper bounds.

In the case where the timing information is used for authentication, it is
possible that the communications channel will modify the meaning of the infor-
mation being sent. However, where the move itself carries the information it is
reasonable to expect that the signal will be received intact. For this reason a
message sent using this covert channel will always be received correctly. This is
in contrast to the timing channels, where interference from other processes on
the machine could corrupt the signals.

However, this does not mean that the channel is noiseless, since the receiver
cannot differentiate between the case where information is being sent, and the
case where the moves carry no meaning (this is also the case for timing channels).



Covert Channels for Collusion in Online Computer Games 361

The moves of independent players are analogous to noise in communications
theory. The situation is similar to low-probability-of-intercept spread-spectrum
radio in that the “amplitude” of the signal cannot be any more than the noise
(a particular move is either made or not, there is no concept of “magnitude”).

In order to reliably transmit a single bit of information, a technique based
on frequency-hopping can be used. For each move, the number sent is chosen
according to a keyed generator. The receiver shares the key and so knows what
move to expect from a colluding player. If, after a number of moves, the receiver
has found that the opponent has made every move as expected, then it can
assume that the opponent is colluding with it and act accordingly. The confidence
level of the decision being correct can be increased by increasing the number of
possibilities at each move or by increasing number of moves before a decision is
made. While waiting longer before making a decision is preferable, if the player
waits too long, then by the time a decision is made, it is no longer possible to
change the game result.

3.4 Authentication Key

The goal of the generator is to distinguish itself from the “background noise”
of other players. Where little or nothing is known about the game strategies
of independent players, it is difficult to make any assertions about the charac-
teristics of the noise. For this reason, it may be safe to assume that at each
turn every move is equally likely — analogous to white noise. This assumption
is particularly useful since it greatly simplifies the design of the generator, and
allows a fast implementation so as to reduce CPU usage (which may be a factor
in deciding a winner).

For spread-spectrum radio, typically a cryptographically secure pseudoran-
dom number generator, such as a stream cipher, is used. In the case of spread-
spectrum radio the transmission is effectively public but in a game the moves
are typically only seen by the opponent. One threat in spread-spectrum radio is
an adaptive adversary, whereas in a game the opponents may not be changed
during the competition. When coupled with the fact that other opponents are
probably not aware of the collusion strategy, it is reasonable to assume that
cryptanalytic attacks are unlikely. Again, this assumption simplifies the design
of the generator and so reduces processor time requirements.

The only goal of the generator is to appear different from a white noise source
so a repeating constant could be used, such as always picking the first move.
However, it is feasible that an opponent could accidentally pick the same strategy.
A small change can be made where the move chosen depends on the stage in
the game. For example r could simply be the result of a pseudorandom number
generator (PRNG) seeded by a shared secret. This simple authentication system
could also be used with the timing based covert channels. A linear congruential
PRNG is very fast and simple, and with well chosen parameters [8, Section 3.2.1]
meets all the requirements (assuming no cryptanalytic attacks).



362 Steven J. Murdoch and Piotr Zieliński

4 Real World Example

The above techniques were developed for and used with the Cambridge Univer-
sity Computing Society (CUCS) Winter Competition [9]. This was a program-
ming competition where entrants submitted one or more programs which played
a variant of Connect-4. These programs then played against each other and a
winner was decided.

4.1 Rules of the Game

As with normal Connect-4, the game is played on a 7 × 6 board. Each player
takes turn to choose a column and places his token at the lowest free square. The
first player to have four tokens in a row, either horizontally, vertically or at a
45� diagonal, wins the game. In the standard game, a player must place exactly
one token at each turn, but in the variant used in the competition, the player
also has the option to pass. This change was made so that standard Connect-4
strategies would not work and thus force entrants to come up with their own
techniques. However, an unforeseen result of the modification to the rules was
that the possibility of a guaranteed winning strategy was eliminated, regardless
of whether the player makes the first move, since a move cannot be forced.

The competition was split into two stages, a league followed by a knockout
tournament. The league proceeds by every entered program being played against
every other entered program. Each match consisted of six games, with each player
alternately starting first. The winner of the match was the player with the most
number of wins and was awarded two points. If both players had an equal number
of wins in the match, then each player is awarded one point.

The five programs with the highest scores in the league were selected for the
knockout tournament. Firstly, the fourth and fifth programs were played in a
match of six games as in the league. However, if this match was a draw, then
the winning program would be the one with the least CPU usage, and if that
was equal, then memory usage and finally code size were considered. Then, the
remaining four programs were played in a standard knockout tournament, with
each match following the rules for the fourth/fifth playoff, i.e. fourth/fifth vs.
first, second vs. third, and finally the winners of the previous two matches.

4.2 Collusion Strategy Chosen

In this competition, overt communication was not permitted in order to prevent
programs communicating with more able humans or more powerful computers.
Also, the only information that a program received from its opponent was the
move number, in ASCII, so there was no redundancy in the encoding. However,
the rules did not explicitly prohibit collusion between opponents. For these rea-
sons a covert channel was required for communication, but it would not break
the rules. There were plans for the final stages of the competition to be run live
so there was a possibility of jittering timing information, even unintentionally.



Covert Channels for Collusion in Online Computer Games 363

Table 2. Summary of winners in matches between Fox, Chicken, Rooster, Rabbit and
Optimal players (“—” denotes a draw)

Fox Rooster Chicken Rabbit Optimal

Fox — Fox Fox — —
Rooster Fox — Rooster — —
Chicken Fox Rooster — — —
Rabbit — — — — Optimal
Optimal — — — Optimal —

Because of the advantages in reliability and simplicity of the Choice of Move
covert channel described in Section 3.2, this was used for communication.

One refinement to the authentication method described in Section 3.4 was
rather than having only two types of colluding player (the Fox and the Chicken,
where a Fox always wins against a Chicken), three were used. The additional
category, Rooster would beat a Chicken but would be beaten by a Fox (see
Table 2). This was because collusion is ineffective in the knockout stage, so
the only way to win was for all five participants to be our colluding players.
This could be achieved by having five Foxes and the rest Chickens, but there
remained the risk that another independent player would get into this stage
(due to Rabbits, the category which will be introduced in Section 4.6). Since, by
applying the strategy described in Section 4.3, our players will never lose, CPU
usage would be the decider and so this should be optimised. Hand optimising a
program is time consuming so it is preferable to minimise the number of programs
that this needs to be done on. If only one of the five Foxes was optimised, then
there is the risk that another will knock it out of the tournament before it has
a chance to play the independent player. To mitigate this risk, two optimised
Foxes were entered, along with four Roosters, so the optimised Foxes would be
guaranteed to play any remaining independent players. Two Foxes were entered
to reduce the impact of any programming errors. This reduced the number of
points given to the Roosters and Fox slightly, but it was decided to be worthwhile.

4.3 Game Strategy

In order for collusion to be feasible, it was necessary to have a strategy which
guaranteed a draw in every game. It was also desirable to design the strategy
such that the all outcomes of the game remain possible for as long as feasible,
so that the decision as to whether to lose or not can be delayed. Finally, so as
to optimise the bandwidth of the covert channel, the number of possible moves
at each turn should be maximised.

We developed a very efficient strategy which allowed a draw to be forced,
regardless of who made the first move. This was in contrast to the non-pass
version of Connect-4 where a strategy [10] exists which guarantees a win if used
by the player who starts and almost never loses when if he plays second.



364 Steven J. Murdoch and Piotr Zieliński

(a) Simple pattern (b) First player (c) Second player

Fig. 2. Possible board patterns used for the game strategy

Our strategy relies on finding a subset of the squares on the board, such that
every winning line must pass through at least one of these, and preventing the
opponent from occupying any of them. We achieve this by designing a pattern
of non-overlapping rectangles on the board as shown in Figure 2(a).

If the opponent plays on the bottom square, then our player
plays on the top square. Our player never plays on the bot-
tom square. Therefore, the opponent can never occupy the
top square.

If the opponent plays on one of the squares, then our player
plays on the other. Therefore, the opponent can never oc-
cupy both squares.

If our player moves first, then it plays on this square, thereby
preventing the opponent from occupying it.

Three possible patterns are shown in Figure 2. The different shades of grey
have no semantic meaning; they are used only to differentiate the rectangles from
each other. Since the rectangles do not overlap, the strategy forces our player to
play on at most one square per move, thereby guaranteeing at least a draw.

4.4 Implementation

The competition allowed ten entries per person and three people entered from
our research group. While the rules explicitly stated that it was permitted to
implement an algorithm developed by someone else, using someone else’s code
was not allowed. For this reason each member of the group entered a program
written independently in a different language.

As intended, no players lost other than times when it was designed to lose
against another colluding player. While there was some risk that this (false
positive) could have happened by accident, the design of the covert channel
reduced this to an acceptable level. As shown in Figure 3, after ten moves (the



Covert Channels for Collusion in Online Computer Games 365

point at which a decision was made) the number of possible move sequences
ranged between 960 and 5760. Therefore, even if an opponent happened to choose
an identical game strategy, the probability of a false positive was at least 1 in 960
(subject to previous assumptions). In contrast, the risk of a false negative (that
one colluding player who should lose to its colluding opponent, fails to identify
in time) can be reduced to the risk of programming error. This is because the
covert channel used can be assumed to introduce no noise. Furthermore, for
deterministic players, all possible games between colluding opponents can be
exhaustively tested in a reasonable time, before entry to the competition.

4.5 Optimisation

The final stage of the competition would take CPU usage into account so there
was a potential advantage to optimise the Foxes. Aside from standard code
efficiency improvements, one domain specific optimisation was to remove all de-
tection code from the Foxes. The simplification was feasible since it was not
necessary for a Fox to identify that it is playing a colluding player, as the re-
sponsibility for the match result can be given to the losing player. To achieve
this a player who has identified that it must lose continually passes until the
game has ended. Additionally no evidence of collusion can then be found by
inspecting the source code of the Foxes.

To ensure the game will result in a win for the Fox when the Chicken passes
the game strategy must be changed slightly. Firstly, the Chicken must start
losing sufficiently early in the game such that it is still possible to lose. Secondly,
a different pattern must be used for the player starting first and the player
starting second. This is because both players having the same pattern would
result in them drawing the game by default after playing four passes before the
authentication could be completed. Thirdly, more flexible patterns (Figure 2(b)
and Figure 2(c)) give the players more equivalent moves, thereby increasing the
reliability of the authentication procedure.

4.6 Rabbits

In the simple example of Optimal players and colluding players, it was seen that
only one Chicken was necessary for the Fox to win, however, the situation is not
so simple when not all independent players are Optimal. That additional worst-
case category of players (so as to find a lower bound) encountered in practice
is a Rabbit, which will play poorly, so lose to Optimal players, but draw with
everyone else. From Table 2 it can be seen that an Optimal player will act as
if it is colluding with any Rabbits in the tournament. Therefore the only way
to win the tournament is to have greater number of Chickens than there are
Rabbits, no matter how many Optimal players exist. While it was likely that
several approximately Optimal players would be entered, it was hoped that there
would be a small number of people who would enter a player that would play so
badly that the chances of winning would be low.



366 Steven J. Murdoch and Piotr Zieliński

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

P
os

si
bl

e
m

ov
e

se
qu

en
ce

s

Move number

�

�

�

�

�

�
�

�

� �

Fig. 3. Number of possible move sequences after a given number of moves. Three
classes of colluding players were used so for each move number, the lower limit, mean
and upper limit of the nine possible matches is plotted

4.7 Results

A summary of the final league table is shown in Table 3.
Since the algorithm used by the Fox, Rooster, and Chicken would only win

in exceptional circumstances, the actual results for colluding players in the com-
petition were very similar to the worst case scenario estimates. Some players ap-
peared to play randomly, so when played against programs using a tree-searching
algorithm the tree-searching algorithm won. This behaviour approximates the
expected results from ideal Rabbits and Optimal players, so the random players
are classed as Semi-Rabbits and the tree-searching players are classed as Semi-
Optimal. However, as expected only six Semi-Rabbits were entered by other
participants and 28 Chicken/Roosters were entered by our group, so we won the
competition with a safe margin of 30 points.

5 Further Work

The above example dealt with the case where neither non-colluding participants
nor the competition management expected collusion to be used. In the case
where collusion is expected and not desired, there are interesting possibilities for
preventing collusion from being effective.



Covert Channels for Collusion in Online Computer Games 367

Table 3. Summary of results at end of league stage. Players are ordered in descending
order of points

No Category Won Drew Lost Points

1 Fox 58 26 0 142
2 Fox 58 26 0 142
3 Rooster 51 29 4 131
4 Rooster 49 31 4 129
5 Rooster 49 31 4 129

·········································· cut-off point ··········································

6 Rooster 48 32 4 128
7 Semi-Optimal 16 67 0 99
...

...
...

...
...

...
13 Semi-Optimal 12 64 8 88
14 Chicken 3 69 12 75

...
...

...
...

...
...

37 Chicken 0 72 12 72
38 Semi-Rabbit 4 63 17 71

...
...

...
...

...
...

43 Semi-Rabbit 1 52 31 54

5.1 Collusion Resistant Competitions

In order to prevent collusion, the competition could be designed such that col-
lusion provides no advantage. During discussion of the problem one observation
made was that the problem of deciding a winner in the competition is similar to
the problem of electing a candidate in an election. While there are some differ-
ences, for instance, that the number of candidates is identical to the number of
voters, there are also many similarities.

One possibility investigated was of a game tournament similar to the Single
Transferable Vote (STV) system. Here, every player plays every other player,
in a similar fashion to a league tournament. However, the winner evaluation is
more complex. At each stage, the normal league rules are applied and an ordering
established, but then the players with the lowest score are eliminated, along with
their contribution to all other players’ scores. The process is repeated until no
more players can be eliminated.

This system has the advantage that Chickens will be eliminated before Foxes,
so the Chickens’ scores can have no effect on the final result, however, they
can control the order in which players are eliminated so it is not clear that
this system is free from manipulation. Additionally, the number of “voters” is
identical to the number of “candidates” so the final stage will likely result in
more than one winner. This was confirmed by running the results of the above
example competition through this algorithm. As expected, all the Chickens were



368 Steven J. Murdoch and Piotr Zieliński

eliminated but the final result included the Foxes and all the Semi-Optimal
players. Since all these players will draw against each other, deciding a winner
is difficult.

Not only should competitions be resistant to collusion but they should be
fair and this is a very difficult quantity to measure. There are a variety of proofs
which state, given certain assumptions, that it is not possible to design an ideal
election. These include Arrow’s theorem [11], Gibbard-Satterthwaite [12, 13] and
Gärdenfors’ extension [14]. These primarily deal with manipulation by voters,
but there has been some work on manipulation by candidates, such as a general
result in [15] and an analysis of the particular case where the election is made
out of a series of pair-wise comparisons in [16]. These state that, given certain
assumptions, non-dictatorial elections are manipulable by candidates deciding
whether or not to participate in the election. This result is not directly applicable
since it assumes that each candidate who votes will vote himself the highest, and
the stronger version of the result also assumes that no candidates vote. However
it may still be partially applicable. Whether these theories imply that an ideal
competition is impossible depends on a formal definition of fairness and collusion
resistance, which is outside the scope of this paper.

5.2 Detecting Collusion

In some games, it may not be desirable or possible to re-arrange the competi-
tion to make collusion infeasible. In these cases, the only alternative may be to
detect collusion and eliminate players if caught. For example, an expert could
examine the match results [17], and in a similar way that a Bridge expert would
look for players being exceptionally lucky in a tournament, an expert suspecting
collusion would look for players being exceptionally unlucky. The expert could
also monitor the games in progress looking for an suspicious changes in appar-
ent skill. If a player is aware of such monitoring, then countermeasures to both
techniques could be taken.

6 Conclusion

In this paper, we show that collusion can offer significant advantages in tourna-
ments which are based around leagues. We present a simple algorithm for acting
on the basis of authentication information which will guarantee winning a com-
petition, assuming only one team is using a collusion strategy and the standard
of players is good. We also introduce a covert channel built using only redun-
dancy in the moves of a game and show how this can be used to authenticate
colluding players. We demonstrate these techniques being successfully applied
in order to win a real world competition. Finally, options for resisting and de-
tecting collusion are explored, including drawing parallels between the design of
competitions and the design of elections.



Covert Channels for Collusion in Online Computer Games 369

7 Acknowledgements

Thanks are due to Phil Cowans, John Fremlin, Ian Jackson, Matt Johnson,
Stephen Lewis, Andrei Serjantov, and Hanna Wallach for their helpful contribu-
tions, and to Microsoft for donating an X-Box as the prize for the competition.
We also would like to thank the anonymous reviewers for their suggestions.

References

[1] American Contract Bridge League: Law 20. Review and Explanation of Calls.
(1997) in Laws of Duplicate Contract Bridge (American Edition).

[2] American Contract Bridge League: Laws of Contract Bridge (Rubber Bridge
Laws, American Edition). (1993)

[3] Winkler, P.: The advent of cryptology in the game of Bridge. Cryptologia 7
(1983) 327–332

[4] Gligor, V.D.: DoD NCSC-TG-030 A Guide to Understanding Covert Channel
Analysis of Trusted Systems (Light-Pink Book). National Computer Security
Center (1993)

[5] Huskamp, J.C.: Covert Communication Channels in Timesharing System. PhD
thesis, University of California, Berkeley, California (1978) Technical Report UCB-
CS-78-02.

[6] Kang, M.H., Moskowitz, I.S.: A pump for rapid, reliable, secure communication.
In: 1st ACM Conf. on Computer and Communications Security, Fairfax, VA,
Center for High Assurance Computer Systems (1993) 119–129

[7] Millen, J.K.: Finite-state noiseless covert channels. In: Proceedings of the Com-
puter Security Foundations Workshop, Franconia, New Hampshire (1989) 81–85

[8] Knuth, D.E.: The Art of Computer Programming. Third edn. Volume 2, Seminu-
merical Algorithms. Addison-Wesley (1998)

[9] Cambridge University Computing Society: Winter programming competition
(2002) http://www.cucs.ucam.org/competition.html.

[10] Allis, L.V.: A knowledge-based approach of connect-four. Master’s thesis, Vrije
Universiteit, Amsterdam, The Netherlands (1988)
ftp://ftp.cs.vu.nl/pub/victor/connect4.ps.Z.

[11] Arrow, K.J.: Social Choice and Individual Values. Second edn. Yale Univ Press
(1970)

[12] Satterthwaite, M.: Strategy-proofness and Arrow’s condition: Existence and cor-
respondence theorems for voting procedures and social welfare functions. Journal
of Economic Theory 10 (1975) 187–217

[13] Gibbard, A.: Manipulation of voting schemes: a general result. Econometrica 41
(1973) 587–601

[14] Gärdenfors, P.: Manipulations of social choice functions. Journal of Economic
Theory 13 (1976) 217–228

[15] Dutta, B., Jackson, M.O., Breton, M.L.: Strategic candidacy and voting proce-
dures. Econometrica 69 (2001) 1013–1038

[16] Dutta, B., Jackson, M.O., Breton, M.L.: Voting by successive elimination and
strategic candidacy. Journal of Economic Theory 103 (2002) 190–218

[17] Yan, J.: Security design in online games. In: 19th Annual Computer Security
Applications Conference, Acteve (1993)


	1 Introduction
	2 Competition Structures
	3 Authentication Mechanisms
	4 Real World Example
	5 Further Work
	6 Conclusion
	7 Acknowledgements
	References

