
IEEE Micro Special Issue on Security

Submission title

Fast Protection-Domain Crossing in the CHERI Capability-System Architecture

Submission contact information

Please direct all correspondence to:

Dr Robert N. M. Watson
University of Cambridge
Computer Laboratory
William Gates Building
15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

Voice: +44 (0)1223 763 569
Fax: 44 (0)1223 334 678
E-mail: robert.watson@cl.cam.ac.uk

Abstract

Capability Hardware Enhanced RISC Instructions (CHERI) supplement the conventional Memory Manage-
ment Unit (MMU) with Instruction-Set Architecture (ISA) extensions that implement an in-address-space
capability-system model. CHERI capabilities can also underpin a hardware-software object-capability model
for scalable application compartmentalization that can mitigate broader classes of attack. This paper de-
scribes ISA additions to CHERI that support fast protection-domain switching, not only in terms of low cycle
count, but also efficient memory sharing with mutual distrust. We propose ISA support for sealed capabil-
ities, hardware-assisted checking during protection-domain switching, a lightweight capability flow-control
model, and fast register clearing – while retaining the flexibility of a software-defined protection-domain
transition model. We validate this approach through a full-system experimental design including ISA exten-
sions, FPGA prototype (implemented in Bluespec SystemVerilog), and software stack including OS (based on
FreeBSD), compiler (based on LLVM), software compartmentalization model, and open-source applications.

Fast Protection-Domain Crossing in the

CHERI Capability-System Architecture

Robert N. M. Watson†, Robert Norton†, Jonathan Woodruff†, Alexandre Joannou†,
Simon W. Moore†, Peter G. Neumann‡, Jonathan Anderson§, David Chisnall†, Nirav Dave*,

Brooks Davis‡, Khilan Gudka†, Ben Laurie*, A. Theodore Markettos†, Ed Maste†,
Steven J. Murdoch¶, Michael Roe†, Colin Rothwell†, Stacey Son†, and Munraj Vadera†

†University of Cambridge ‡SRI International *Google Inc. §Memorial University
¶University College London

1 Introduction

Vulnerability mitigation is a key tenet of contem-
porary computer-system design. Deployed systems
commonly employ two approaches: exploit mitiga-
tion (which targets attack-vector characteristics such
as remote code injection) and software compartmen-
talization (which limits privileges and further attack
surfaces available to attackers [5, 11, 15]). In com-
partmentalization, applications are decomposed into
isolated (“sandboxed”) components that are granted
only selected access to system and application re-
sources. Unlike exploit mitigation, compartmental-
ization does not depend on knowledge of specific at-
tack vectors, and is resistant to an arms race as attack
and defense co-evolve.

Compartmentalization relies on two underlying
trustworthy primitives, typically provided through a
blend of hardware and software: strong isolation, of-
ten implemented using Operating-System (OS) pro-
cess models grounded in virtual memory, and con-
trolled communication, implemented as Inter-Process
Communication (IPC) between processes. These
primitives were designed for coarse-grained isola-
tion – e.g., whole applications or even virtual ma-
chines; they limit compartmentalization scalability in
the number of domains, rate of domain switches,
and degree of memory sharing. This prevents use

of more granular decompositions in larger, security-
sensitive applications such as OpenSSH [11] and
Chromium [12].

The Capability Hardware Enhanced RISC Instruc-
tions (CHERI) ISA is a set of incrementally adopt-
able architectural extensions for scalable, in-address-
space memory protection via a hybrid capability
model [19, 2, 16]. CHERI supplements the conven-
tional Memory Management Unit (MMU) used to im-
plement virtual-memory-based processes with an in-
process, compiler-directed, fine-grained, capability-
based memory-protection model. CHERI capabili-
ties are used by the compiler to implement strong
protection for pointers, and are saved/restored dur-
ing context switches between domains at a low fixed
cost, rather than relying on associative caches such
as the MMU’s Translation Lookaside Buffer (TLB)
that must be flushed and reloaded from in-memory
tables. CHERI capabilities optimize sharing by al-
lowing cheap delegation and avoiding aliasing prob-
lems experienced by TLBs as memory sharing in-
creases. These properties are critical to scaling up
intra-application compartmentalization that is char-
acterized by frequent domain crossings and extensive
memory sharing.

We have used CHERI’s ISA facilities as a founda-
tion to build a software object-capability model sup-
porting orders of magnitude greater compartmen-

1

talization performance, and hence granularity, than
current designs. We use capabilities to build a
hardware-software domain-transition mechanism and
programming model suitable for safe communication
between mutually distrusting software. We extend
our CHERI ISA and FPGA-based processor pro-
totype with sealed capabilities, hardware-accelerated
object invocation, and fast register clearing, and
the CHERI software stack (LLVM compiler [7] and
FreeBSD OS [9]) with a domain-transition calling
convention and a userspace object-capability model.
While CHERI learns from prior capability systems,
such as HYDRA [20] and the M-Machine [1], we fo-
cus on deploying protection with current C-language
Trusted Computing Bases (TCBs), composing both
capability-system and MMU-based virtual-memory
models.

In this paper, we describe CHERI’s hybrid
capability-system model, which enables fast domain
switching, and also efficient memory sharing be-
tween mutually distrusting domains, while retaining
flexibility through a software-defined and hardware-
enforced compartmentalization model. We present
refinements to our CHERI object-capability mecha-
nism, published in the 2015 IEEE Symposium on Se-
curity and Privacy [16], placing greater focus on ar-
chitectural and microarchitectural performance. We
introduce support for fast clearing of general-purpose
and capability registers to efficiently prevent leaks.
We also present a cycle-level analysis of the CHERI
domain-switch mechanism, exploring tradeoffs be-
tween hardware optimization and software flexibil-
ity, and of the impact on microarchitectural elements
such as TLB and cache misses.

2 Approach

Aimed at C-Language TCBs, CHERI extends con-
ventional MMU-based hardware and software pro-
tection with two incrementally deployable capability-
based techniques implemented by the ISA, OS, and
compiler:

• Memory capabilities replace pointers within
address spaces, mitigating memory-based at-
tacks [19, 2].

• Object capabilities (implemented using mem-
ory capabilities) support scalable software com-
partmentalization [16].

Capability systems are hardware, software, or dis-
tributed systems designed to implement the princi-
ple of least privilege [3, 13]. Capabilities are unforge-
able tokens of authority granting rights to objects in
the system; they can be selectively delegated between
constrained programs to enforce security policies.

CHERI capabilities extend virtual addresses to
protect language-level pointers, offering greater in-
tegrity via tags, bounds for spatial protection, and
permissions to limit use. CHERI capabilities are
similar to fat pointers, but also have strong mono-
tonicity properties: Pointer manipulations can only
maintain or decrease rights associated with a pointer,
not increase them. For example, a pointer whose
bounds have been narrowed to a specific memory al-
location can neither be used for memory access out-
side of its bounds, nor be transformed into one that
can. Capability integrity is enforced in memory via
tags – attempts to overwrite some or all of a pointer
in memory will atomically clear the tag. CHERI’s
capability mechanism provides fine-grained, efficient,
and effective protection for in-address-space memory
(e.g., heap or stack allocations). Unlike many historic
“pure” hardware capability systems [8], CHERI’s hy-
brid capability-system architecture retains a conven-
tional MMU, supporting a broad range of software
models as illustrated in Figure 1 – and strong com-
patibility with contemporary C-language software.

In software compartmentalization (a.k.a. privilege
separation), vulnerabilities are mitigated by decom-
posing applications into isolated components – each
granted only the rights it requires to operate [5, 11].
For example, in conventional process-based compart-
mentalization, gunzip decompression can be executed
in a sandbox that has been delegated only capabil-
ities for the files being read from and written to.
A successful exploit in the decompression code will
yield only those limited rights, requiring the attacker
to find and exploit further vulnerabilities. Compart-
mentalization granularity describes the degree of pro-
gram decomposition. Fine-grained compartmental-
ization improves mitigation by virtue of the princi-

2

‘Hybrid’ code uses pointers or annotated CHERI capabilities
‘Legacy’ code compiled against a RISC ISA

Per-address-space memory-management and capability executive
‘Pure-capability’ code uses CHERI capabilities for all C pointers

FreeBSD kernel
+ CHERI support for userspace capabilities

Hybrid Netsurf links
against legacy and

pure-capability code
Capability-based

single-address-space
OS and applicationsAddress-space executive Address-space executive

Legacy Fetch uses
pure-capability zlib
via an ABI wrapper

Address-space executive

Pure-capability
Fetch can still use

legacy code in
compartments

FreeBSD kernelM
M

U
-b

as
ed

 v
irt

ua
l a

dd
re

ss
 sp

ac
es

Fetch command-line
HTTP client

zlib

Netsurf
web browser

MMU-based OSes Hybrid capability/MMU OSes Pure capability OSes

libpng

Address-space executive

CHERI CPUCHERI CPU CHERI CPU

libssl libssllibssl libssl

Regular linkage
Compartment boundary

zlibzlib libpnglibpng zlibzlib
libssl

libssllibssl class1

class3

ABI wrapper ABI wrapper

ABI wrapper

M
M

U
-based virtual address spaces

Figure 1: CHERI supports a spectrum of hardware-software architectures.

ple of least privilege: attackers must exploit more
vulnerabilities to gain rights in the target system –
meaning that improving the performance and scala-
bility of compartmentalization can directly support
improvements to software security.

Capability models prove particularly useful in im-
plementing compartmentalization, as they allow pro-
grams to easily control what rights are delegated
to compartments, and to configure sets of compart-
ments with diverse trust relationships [10, 20, 6, 15].
Object-capability systems blend object-oriented OS or
programming-language facilities with capabilities to
protect application-defined objects. Object encapsu-
lation and interposition then allow programmers to
express a range of security policies.

As with MMU-based memory protection, CHERI
capabilities can be used to construct a software-
defined (but hardware-supported) object-capability
model based on isolation and controlled communica-
tion. The clean separation of policy and mechanism
in object-capability systems aligns elegantly with the
RISC (Reduced Instruction Set Computer) philoso-
phy: with protection “fast paths” in hardware, policy
definition is left to the OS, compiler, and application.
The resulting hardware-software security model can
efficiently implement diverse security policies includ-
ing hierarchical models (e.g., sandboxing) and non-
hierarchical models (e.g., mutually distrusting com-
ponents).

3 Architecture

We begin by briefly describing CHERI memory pro-
tection. CHERI extends the 64-bit MIPS ISA with
compiler-managed, capability-based, intra-address-
space memory protection. Although prototyped with
respect to the MIPS ISA, the CHERI approach would
likely also apply cleanly to other RISC ISAs.

To implement strong pointer protection using ca-
pabilities, CHERI supplements the general-purpose
MIPS register file with a capability register file. Ca-
pability instructions allow 256-bit capabilities to be
loaded and stored from memory, inspected and ma-
nipulated (e.g., to get or set the bounds), derefer-
enced via load and store instructions, and to be the
target of jump and branch instructions. Capabil-
ity permissions control what operations can be per-
formed via a capability. Access via a capability is
subject to tag validity, relocation relative to its base
and offset, and bounds checking relative to its base
and length:

0

v

063

otype (24 bits) permissions (31 bits) s

offset (64 bits)

base (64 bits)

length (64 bits)

(v = 1-bit validity tag, s = 1-bit sealed)

3

Most capability registers are available to com-
piler and OS-defined Application Binary Interfaces
(ABIs), but certain registers are reserved in the ISA.
The program-counter capability ($pcc) extends the
MIPS program counter ($pc) to constrain code ex-
ecution, and the exception program counter ($epc) is
extended to be the exception program-counter capa-
bility ($epcc). For compatibility, the default data ca-
pability ($ddc) interposes on (or blocks) conventional
MIPS loads and stores. Two special capabilities are
available during exception handling: the kernel code
capability ($kcc) and kernel data capability ($kdc).

Guarded manipulation implements monotonicity :
instructions cannot increase the rights associated
with a capability. Tagged memory associates a 1-
bit tag with each physical memory location that can
hold a capability, indicating the presence of a valid
capability. Stores to, and loads from, capabilities in
memory are atomic with their tags, allowing safe con-
current access from multiple cores. The memory ac-
cessible to executing code is the transitive closure of
capabilities in its capability register file, and any ca-
pabilities reachable through those capabilities. At
reset, full capabilities are granted to the boot en-
vironment, from which point they may be delegated
and refined from firmware to OS kernel, OS kernel to
userspace, and then within user compartments.

3.1 Object-capability extensions

A CHERI-based object-capability model could be
constructed without further ISA extensions: user
threads with access to (perhaps overlapping) subsets
of the user address space could invoke the software
supervisor, which holds a superset of their rights, via
system calls to implement controlled communication
with asymmetric or mutual distrust. We choose to
extend the ISA for several reasons:

• To treat object capabilities as first-class citi-
zens in C as we do memory capabilities, permit-
ting object-capability references to be embedded
within C data structures.

• To keep important programmer- and compiler-
defined paths in userspace, avoiding system calls
for permission and type checks.

• To avoid the kernel needing to maintain parallel
structures (e.g., tables of objects that must be
searched) to implement encapsulation.

• To avoid the need to expose conventional kernel
system calls to sandboxed userspace code, reduc-
ing the attack surface.

• To efficiently clear non-argument/return-value
registers during domain transition.

• To limit capability propagation to reduce the
cost of (and need for) garbage collection.

We therefore implement extensions to CHERI
memory protection: sealed capabilities with object
types, capability invocation and return, instructions
for permission and type checking, instructions to
clear capability and general-purpose registers, and
capability flow-control permissions limiting propaga-
tion.

3.2 Object capabilities

Whereas CHERI memory capabilities refer to
bounded regions of memory within the virtual ad-
dress space, object capabilities refer to software-
defined objects whose invocation will trigger an in-
address-space protection-domain switch. Object ca-
pabilities implement encapsulation, restricting not
just caller access to callee-private data, but also callee
access to caller-private data, providing a safe founda-
tion for mutual distrust. CHERI object capabilities
are invoked in pairs: a sealed code capability describes
the code to be executed when an object is invoked
(i.e., the class), and a sealed data capability describes
an object’s instance-specific data.

To prevent callers from manipulating the internal
state of object capabilities (which would violate en-
capsulation), an object’s code and data capabilities
are both sealed, indicated in the ISA by a sealed bit
in the capability. Sealed capabilities are immutable:
any attempt to manipulate a field of a sealed capabil-
ity will throw an exception. The sealed bit also pro-
hibits loads (including instruction fetch) and stores.
They are otherwise treated as ordinary capabilities
with respect to the capability register file and instruc-
tion set – and appear as pointers within the program-
ming language.

4

Sealed code and data capabilities are linked by the
otype field, a software-defined object type that must
be identical for a pair of code and data capabilities
to be accepted for joint invocation. Capabilities are
sealed using the CSeal instruction, which accepts two
capability-register operands: the code or data mem-
ory capability to be sealed, and a second capability
with the Permit Seal permission set. The virtual ad-
dress of a capability with Permit Seal set is treated
as a type. Object types prevent instance data from
being used with the wrong class.

3.3 Object-capability invocation

Object-capability invocation is implemented via the
instructions CCall, which invokes a sealed capabil-
ity pair, and CReturn, which returns to the invok-
ing context. To support a wide variety of software
behaviors, the CHERI ISA relies on software excep-
tion handlers to partially implement both instruc-
tions, allowing the supervisor to implement both syn-
chronous (“call-return” – requiring a reliable return
to the caller) and asynchronous (“message passing”
or “closure”) semantics.

CCall performs hardware checks (for sealing, suit-
able permissions, and matching types), selecting an
exception vector based on their results. CReturn trig-
gers a software exception handler without checks, and
may be eschewed if CCall is used as an asynchronous
message-send primitive. The CCall and CReturn

mechanisms described by the ISA are not sufficient
to implement secure protection-domain transition:
the software runtime (including the supervisor and
userspace runtime) must ensure that memory alloca-
tion and capability distribution implement any re-
quired isolation, and that register files have been
flushed of sensitive data or rights prior to transition.

CUnseal allows authorized software to remove the
sealed bit if it also holds a capability usable to seal
the type. This “escape valve” is used by the CCall

exception handler to unseal the sealed code and data
capabilities. It can also be used by a userspace class
to unseal other argument objects.

3.4 Capability flow control

CHERI does not prevent use-after-free or other tem-
poral safety violations in hardware; these are con-
trolled by program, language, or run-time mecha-
nisms – e.g., software invariants or garbage collection.
When executing within a single protection domain,
rapid memory reuse does not constitute a vulnerabil-
ity in the model. When memory is passed between
protection domains, memory reuse could lead to vul-
nerability.

To assist the software security model in address-
ing temporal issues, we have extended the CHERI
ISA with a 2-bit capability flow-control model that
marks capabilities as either global or local. Global ca-
pabilities, identified by the Global permission, may
be stored via any writable memory capability. Lo-
cal capabilities, without Global set, may be stored
only via capabilities that themselves have the Per-
mit Store Local permission set. CheriBSD marks
heap references as global, and stack references as
local, preventing sharing of stack memory between
protection domains. The global/local mechanism re-
stricts only the flow of capabilities, not data.

3.5 Fast register clearing

To prevent information leakage across domain bound-
aries we must clear unused registers, numerous on
RISC processors and increased by capability regis-
ters. We introduced CClearRegs instructions to effi-
ciently zero up to 16 registers in a single operation.

4 Microarchitecture

The CHERI FPGA soft-core processor implements
a capability register file, capability instructions, and
tagged physical memory [19]. Minor additions were
required to implement compartmentalization-focused
ISA extensions, the sealing mechanism, and capabil-
ity flow control. The costs of these additions were
negligible in terms of FPGA resources and critical
path, and consumed only a small amount of ISA en-
coding space.

Efficient implementation of the CClearRegs opti-
mization required modification to the register for-

5

warding logic. We extended the register file with a
zero mask : a single bit for each architectural regis-
ter indicates whether a read of that register should
return zero. Normal writes to a register clear the
bit. Should CClearRegs fail to commit, the original
register values become readable again.

5 Compiler

We modified the LLVM C front end, MIPS back end,
and target-independent optimizers to support fine-
grained memory protection and our ISA extensions.
We modified around 8KLoC, from a total of just un-
der 2MLoC in LLVM/Clang.

By default, the CHERI LLVM compiler generates
code to provide precise memory protection: capa-
bilities are used wherever possible to limit acciden-
tal buffer overruns, protect pointers (including those
used in control flow) from corruption in memory,
and so on. However, the underlying assumption is
one of mutual trust: callees and callers make no at-
tempt to limit leakage of data or capabilities between
them, as they are within the same protection do-
main. Substantially more care is required when cross-
ing protection-domain boundaries. Leaking a capa-
bility from a caller to a callee (or vice versa) could
have serious integrity, confidentiality, and availability
implications.

The compiler implements a new calling conven-
tion, CHERI CCall, for functions that can be invoked
across domains. With knowledge of the function
type, only the compiler is aware of which argument
and return-value registers are used. Thus it gener-
ates code that clears unused argument registers in
the caller context, and unused return registers in the
callee context. CCall and CReturn are responsible
for clearing other registers.

6 Operating system

We extended CheriBSD, an adaptation of FreeBSD
that supports CHERI memory protection, to im-
plement a lightweight, in-process object-capability
model. Kernel changes, summarized in Table 1, add

roughly 4KLoC to the approximately 13MLoC ker-
nel.

The CheriBSD object-capability model revolves
around the notion of a per-thread trusted stack that
links a chain of disjoint, per-compartment stacks used
by each object executing in the thread. The trusted
stack is initially empty, with the first thread of the
first process executing with ambient authority (global
$pcc and $ddc). On each invocation, CCall saves a
code and data capability that CReturn will use to re-
sume. The caller is responsible for setting the invoked
data capability ($idc) to a memory region (typically
on the caller’s stack) that contains everything needed
restore state.
CCall, illustrated here in pseudocode, checks that

the provided sealed code ($scc) and data ($sdc) ca-
pabilities are valid and properly sealed, and have
matching types and suitable permissions:

/* ISA validation of CCall arguments. */

if ((!$scc.valid || !$sdc.valid) ||

!$scc.sealed || !$sdc.sealed) ||

($scc.type != $sdc.type) ||

!($scc.perms & EXECUTE) ||

($sdc.perms & EXECUTE) ||

($scc.offset >= $scc.length))

throw_exception();

/* Software exception handler. */

if (capregs.has_local_args())

throw_exception();

if (trusted_stack.full())

throw_exception();

trusted_stack.push($epcc);

trusted_stack.push($idc);

$epcc = cunseal($kcc, $scc);

$idc = cunseal($kdc, $sdc);

mipsregs.clear_nonargument();

capregs.clear_nonargument();

It also checks that argument capabilities are either
untagged or have the Global permission. It pushes
the current $pcc and $idc onto the trusted stack, and
installs unsealed versions of the new code and data
capabilities in $pcc and $idc. CCall clears any non-
argument registers; this could be done by the caller
and callee, but clearing here allows both sides to rely
on it always happening, avoiding the need to clear

6

Subsystem Description

Program start On exec(), user capability registers grant access to the full user address space.

Context switching Capability registers are saved and restored during thread context switching.

CHERI exceptions Capability-related exceptions are mapped to a new SIGPROT signal for delivery via the
UNIX signal mechanism.

Object capabilities The kernel’s CCall and CReturn exception handlers implement synchronous object-
capability invocation using a trusted stack.

System calls Only user program-counter capabilities with the software-defined PERM SYSCALL per-
mission are permitted to make system calls.

Signal delivery Signal handlers run in a privileged user context, and might choose to unwind the
trusted stack, or deliver a language-level exception.

Table 1: CheriBSD kernel changes to support userspace capabilities

registers in both to prevent leakage or accidental use
of leaked data or capabilities.

CReturn has the simpler tasks of validating that
any returned capability is global or NULL, clearing
non-return registers, and popping and restoring $pcc

and $idc:

/* Software exception handler. */

if (capregs.has_local_retval())

throw_exception();

if (trusted_stack.empty())

throw_exception();

$idc = trusted_stack.pop();

$epcc = trusted_stack.pop();

mipsregs.clear_nonreturnval();

capregs.clear_nonreturnval();

The kernel accepts system calls only from classes
that have the software-defined User Syscall permis-
sion, ensuring that access to system resources can be
mediated by in-process system objects.

7 Evaluation

7.1 Memory-protection performance

CHERI enables the compiler to represent all point-
ers as capabilities. This primarily imposes a cost in
memory footprint due to larger pointers. To measure
worst-case overheads for linked-list and tree-traversal
operations, we compiled the pointer-intensive Olden

microbenchmark suite to use capabilities for all point-
ers. The average execution-time overhead is 46%.
This is near the overhead limit, with less pointer-
heavy applications typically exhibiting an overhead
well below 10%. Reducing the size of capabilities and
making more selective use of capabilities present fur-
ther opportunities for optimization. Detailed results
are available in previous publications [19, 2].

7.2 Domain-crossing optimizations

To better understand object invocation costs with
CHERI, we traced best-case invoke and return for
a zero-byte memcpy. Figure 2 shows the cycle costs of
the two domain transitions and sandboxed workload
divided into phases.

A large cost lies in validating that capability argu-
ments and return values conform to CheriBSD CCall

semantics and capability-flow policies. Incorporat-
ing object type checking into the CCall instruction
achieves modest gains of 44 cycles (5.5%). Checking
for local capability arguments is costly, as a sequence
of seven instruction is required for each of ten argu-
ment registers. An ISA extension could reduce this
cost, but as the validation is specific to CheriBSD’s
compartment memory model, there is a tradeoff be-
tween generality and performance.

Clearing unused argument and return registers (in-
cluding capabilities) to limit leaked data and attacks
is also a significant cost. The CClearRegs instruc-
tion, with a modified kernel and compiler, experi-

7

0 100 200 300 400 500 600 700 800 900
cycles of runtime

caller
kernel
argument validation
register clearing
sandbox

sandbox call sandbox return
exception with

software handler
+ hardware argument

validation

+ fast clear
+ hardware call

(hypothetical)

Figure 2: Total cycle count, spanning userspace and kernel, for a zero-byte memcpy in a sandbox

ences a further reduction of 172 cycles (21%).
Other significant costs include saving and restoring

callee-save registers (12 general purpose, 11 capabil-
ity), manipulating the trusted stack, trap overhead
(four-fold for the call and return sequence), and cache
and TLB usage if invocations are infrequent.

The final bar on Figure 2 shows a hypothetical
pure-hardware, single-cycle domain crossing similar
to the M-Machine [1]. This instruction unseals the
code and data operands if their types match, and
jumps directly into the sandbox. This hypotheti-
cal model sacrifices the trusted intermediary imple-
mented by the kernel handler, losing the trusted stack
and hence call-return semantics. It would lose the
added assurance of having register clearing performed
by an intermediary and system-wide guarantees as to
the capability-flow policy. This model would elim-
inate another 145 cycles from the fastest software-
handler case (18.1%), but at the expense of security
and flexibility in the software model.

7.3 Domain-crossing performance

We performed an experiment to compare the cost of
different compartmentalization mechanisms, and ex-
plore how they scale with the quantity of data trans-
ferred across protection boundaries:

pipe transfers to a sandbox process via a UNIX pipe
shmem transfers to a sandbox process through

shared memory using a semaphore for synchro-
nization

CHERI transfers to a in-process sandbox via a
CHERI capability and CCall

func performs a simple unprotected function call to
memcpy

Figure 3 shows the execution time for each method
as the payload increases. While memcpy dominates
as the payload grows, each domain-crossing mecha-
nism has different fixed costs. A CHERI call/return
gives a fixed overhead of around 500 cycles over a
function call, whereas the other cases have much
higher overhead (>17,000 cycles) from system calls
and OS synchronization. The overhead for all shared-
memory implementations is dominated by the cost of
domain crossing for small payloads, but by the cost of
cache and then TLB misses at larger sizes. The pipe
case performs additional data copies and converges to
about 6 times more expensive for larger data sizes.

7.4 Macrobenchmark: library com-
partmentalization

Transparent and efficient library compartmentaliza-
tion is a major benefit of the CHERI approach. We
demonstrate this through a compartmentalized zlib

that performs compression in a sandbox, allowing all
linked applications to receive security benefit. In Fig-
ure 4, we show the time gzip takes to compress files
of varying sizes using CHERI compartmentalization,
process-based Capsicum compartmentalization, and
an unmodified zlib library. Process-based compart-
mentalization incurs linear overhead as it must trans-
fer data using IPC, whereas CHERI shares mem-
ory using capabilities and experiences a small, near-
constant, overhead due to domain-switch costs.

8

100

101

102

103

T
L

B
m

is
se

s

100

102

104

106

L
2

m
is

se
s

32
B

12
8B

51
2B

2K
iB

8K
iB

32
K
iB

12
8K

iB

51
2K

iB

2M
iB

8M
iB

102

105

108

payload size

ex
ec

u
ti

o
n

ti
m

e
(c

y
cl

es
)

pipe

shmem

CHERI

function

Figure 3: Comparison of domain crossing methods –
absolute cycle cost (log-log)

8 Related work

Capability systems have a long history [3, 8, 13], with
hardware-software systems such as the tagged and
typed-object PSOS design [10] and the CAP [17] im-
plementation – ideas adopted in operating systems
such as HYDRA [20], and seL4 [6], and FreeBSD us-
ing Capsicum [15].

CheriBSD’s object-capability model is strongly in-
fluenced by HYDRA: our trusted stack records syn-
chronous object invocations able to pass typed capa-
bilities between protection domains within a thread
of execution. Whereas HYDRA used an MMU-based
model with kernel-implemented capabilities, CHERI
capabilities are represented in the ISA.

CHERI is also strongly influenced by M-
Machine [1], which implemented fine-grained mem-
ory capabilities with tagged memory. Whereas M-
Machine implemented an asynchronous model (rea-
sonably described as secure closures, combining code

1 2 3 4 5 6 7 8
0

10

20

30

40

File size / MB

T
ot

a
l

ti
m

e
(s

ec
o
n

d
s)

Process
CHERI
Baseline

Figure 4: Compression time for gzip with library
compartmentalization

and data references in entry and return capabilities,
allowing a single-instruction call/return mechanism),
CheriBSD implements secure object invocation based
on a TCB-maintained reliable return stack, and sepa-
rate code and data capabilities. CHERI’s exception-
handler-based approach can support a range of
software-defined models including the M-Machine
model. Unlike M-Machine, CHERI maintains source-
code and binary compatibility with current software
stacks through a conventional MMU, process model,
C language, and interoperable ABIs.

Prior hardware research has explored other mod-
els for efficient domain crossing. Mondriaan is an
access-control-centered approach based on a table-
based mechanisms representing in-address-space se-
curity domains, and runs an adaptation of Linux [18].
PUMP provides a software-defined tagged model
based on a clean-slate ISA approach, able to con-
strain information flow [4]. CODOMs provides code-
centric, rather than object-centric, domains, where
the current PC determines the accessible memory
based on tags attached to page-table entries [14]. It
provides low-latency switching by jumping between
code domains but restricts each domain to a single
instance. Data can be passed between domains using

9

fine-grained capabilities, but no fine-grained memory
or pointer safety is provided within domains. Revo-
cation is provided either by “synchronous” capabil-
ities that survive in registers only for the duration
of a cross-domain call, or using in-memory counters
to invalidate “asynchronous” capabilities referencing
the counter.

Further related work is considered in our papers
on CHERI memory protection [19], C-language sup-
port [2], and compartmentalization [16].

9 Availability

We have released the CHERI hardware and software
stacks, specifications, and manuals, as open source:

http://www.cheri-cpu.org/

Our experimental data is available at:

https://www.cl.cam.ac.uk/research/security/

ctsrd/data/

10 Conclusion

Software compartmentalization is a critical and widely
deployed vulnerability mitigation technique. However,
compartmentalization scalability is limited by current
processs architectures – in particular, the use of table-
oriented virtual addressing as the means of constructing
isolated compartments, and IPC as the means of commu-
nicating between them. We describe how CHERI memory
protection can – with only minor additions and optimiza-
tions – supplement virtual addressing as a scheme to sup-
port fast domain switching with efficient shared memory.
We demonstrate substantial performance improvement,
and a high level of compatibility with current systems-
software designs.

11 Acknowledgments

We thank Ross Anderson, Ruslan Bukin, Gregory Chad-
wick, Steve Hand, Wojciech Koszek, Bob Laddaga,
Patrick Lincoln, Ilias Marinos, Andrew W. Moore, Alan
Mujumdar, Prashanth Mundkur, Philip Paeps, Howie
Shrobe, Stu Wagner, and Bjoern Zeeb, as well as our
anonymous reviewers, for their feedback and assistance.
This work is part of the CTSRD and MRC2 projects

sponsored by the Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Labo-
ratory (AFRL), under contracts FA8750-10-C-0237 and
FA8750-11-C-0249. The views, opinions, and/or find-
ings contained in this paper are those of the authors
and should not be interpreted as representing the of-
ficial views or policies, either expressed or implied, of
the Department of Defense or the U.S. Government.
We also acknowledge the EPSRC REMS Programme
Grant [EP/K008528/1], the EPSRC Impact Acceler-
ation Account [EP/K503757/1], EPSRC/ARM iCASE
studentship [13220009], Microsoft studentship [MRS2011-
031], the Isaac Newton Trust, the UK Higher Education
Innovation Fund (HEIF), Thales E-Security, and Google,
Inc.

References

[1] Carter, N. P., Keckler, S. W., and Dally,
W. J. Hardware support for fast capability-based
addressing. SIGPLAN Not. 29, 11 (Nov. 1994), 319–
327.

[2] Chisnall, D., Rothwell, C., Davis, B., Wat-
son, R. N., Woodruff, J., Vadera, M., Moore,
S. W., Neumann, P. G., and Roe, M. Beyond
the PDP-11: Processor support for a memory-safe
C abstract machine. In Proceedings of the 20th Ar-
chitectural Support for Programming Languages and
Operating Systems (2015), ACM.

[3] Dennis, J. B., and Van Horn, E. C. Program-
ming semantics for multiprogrammed computations.
Communications of the ACM 9, 3 (1966), 143–155.

[4] Dhawan, U., Hritcu, C., Rubin, R., Vasilakis,
N., Chiricescu, S., Smith, J. M., Knight, T. F.,
Pierce, B. C., and DeHon, A. Architectural Sup-
port for Software-Defined Metadata Processing. In
20th International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (ASPLOS) (March 2015), ACM.

[5] Karger, P. Limiting the damage potential of dis-
cretionary Trojan horses. In Proceedings of the 1987
Symposium on Security and Privacy (April 1987),
IEEE.

[6] Klein, G., Andronick, J., Elphinstone, K.,
Heiser, G., Cock, D., Derrin, P., Elkaduwe,
D., Engelhardt, K., Kolanski, R., Norrish,
M., Sewell, T., Tuch, H., and Winwood, S.

10

http://www.cheri-cpu.org/
https://www.cl.cam.ac.uk/research/security/ctsrd/data/
https://www.cl.cam.ac.uk/research/security/ctsrd/data/

seL4: Formal verification of an operating-system ker-
nel. Communications of the ACM 53 (June 2009),
107–115.

[7] Lattner, C., and Adve, V. LLVM: A compi-
lation framework for lifelong program analysis &
transformation. In Proceedings of the International
Symposium on Code Generation and Optimization:
Feedback-directed and runtime optimization (2004),
IEEE.

[8] Levy, H. M. Capability-Based Computer Systems.
Butterworth-Heinemann, Newton, MA, USA, 1984.

[9] McKusick, M. K., Neville-Neil, G. V., and
Watson, R. N. M. The Design and Implementation
of the FreeBSD Operating System. Pearson, 2014.

[10] Neumann, P., Boyer, R., Feiertag, R., Levitt,
K., and Robinson, L. A Provably Secure Operat-
ing System: The system, its applications, and proofs.
Tech. rep., Computer Science Laboratory, SRI Inter-
national, May 1980. 2nd edition, Report CSL-116.

[11] Provos, N., Friedl, M., and Honeyman, P. Pre-
venting Privilege Escalation. In Proceedings of the
12th USENIX Security Symposium (2003), USENIX.

[12] Reis, C., and Gribble, S. D. Isolating web pro-
grams in modern browser architectures. In EuroSys
’09: Proceedings of the 4th European Conference on
Computer Systems (2009), ACM.

[13] Saltzer, J. Protection and the control of infor-
mation sharing in Multics. Communications of the
ACM 17, 7 (July 1974), 388–402.

[14] Vilanova, L., Ben-Yehuda, M., Navarro, N.,
Etsion, Y., and Valero, M. CODOMs: Protect-
ing software with code-centric memory domains. In
Proceeding of the 41st Annual International Sympo-
sium on Computer Architecuture (Piscataway, NJ,
USA, 2014), ISCA ’14, IEEE Press, pp. 469–480.

[15] Watson, R. N. M., Anderson, J., Laurie, B.,
and Kennaway, K. Capsicum: Practical capabil-
ities for Unix. In Proceedings of the 19th USENIX
Security Symposium (August 2010), USENIX.

[16] Watson, R. N. M., Woodruff, J., Neumann,
P. G., Moore, S. W., Anderson, J., Chisnall,
D., Dave, N., s Davis, B., Gudka, K., Laurie,
B., Murdoch, S. J., Norton, R., Roe, M., Son,
S., and Vadera, M. CHERI: A Hybrid Capability-
System Architecture for Scalable Software Compart-
mentalization. In Proceedings of the 36th IEEE Sym-
posium on Security and Privacy (May 2015).

[17] Wilkes, M., and Needham, R. The Cambridge
CAP computer and its operating system. Elsevier
North Holland, New York, 1979.

[18] Witchel, E., Cates, J., and Asanović, K. Mon-
drian memory protection. ACM SIGPLAN Notices
37, 10 (2002), 304–316.

[19] Woodruff, J., Watson, R. N. M., Chisnall, D.,
Moore, S. W., Anderson, J., Davis, B., Laurie,
B., Neumann, P. G., Norton, R., and Roe, M.
The CHERI capability model: Revisiting RISC in an
age of risk. In Proceedings of the 41st International
Symposium on Computer Architecture (June 2014).

[20] Wulf, W., Cohen, E., Corwin, W., Jones,
A., Levin, R., Pierson, C., and Pollack, F.
HYDRA: the kernel of a multiprocessor operating
system. Communications of the ACM 17, 6 (1974),
337–345.

11

