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ABSTRACT
HTTP Strict Transport Security (HSTS) is a widely-deployed secu-
rity feature in modern web browsing. It is also, however, a poten-
tial vector for user tracking and surveillance. Tor Browser, a web
browser primarily concerned with online anonymity, disables HSTS
as a result of this tracking potential. We present the CoStricTor pro-
tocol which crowdsources HSTS data among Tor Browser clients. It
gives Tor Browser users increased resistance to man-in-the-middle
attacks without exposing them to HSTS tracking. Our protocol
adapts other privacy-preserving data aggregation algorithms to
share data effectively among users with strong local differential pri-
vacy guarantees. The CoStricTor protocol resists denial of service
attacks by design through our innovative use of Bloom filters to
represent complementary data. Our simulations show our protocol
can model up to 150,000 websites, providing 10,000 upgrades to
HSTS for users.

1 INTRODUCTION
HSTS (HTTP Strict Transport Security) is an HTTP security feature
that forces secure connections on websites that have previously pro-
vided a HSTS flag to the user’s browser. Currently, the Tor Browser
does not support HSTS due to the tracking potential of HSTS. Ma-
licious websites could set arbitrary HSTS flags by directing the
browser to load resources from various domains or subdomains,
creating a persistent fingerprint allowing multiple visits by the
same user to be linked [33]. However, disabling HSTS removes the
security protection this feature offers and increases the risk that
malicious Tor exit nodes could perform a man-in-the-middle attack.

We construct a protocol which enables users of Tor Browser to
effectively crowdsource their HSTS flag status. Users share HSTS
flags they receive from websites into a centralized location where
it can be distributed to other users for querying. This completely
eliminates the potential of HSTS tracking as described in [33] by
ensuring that any malicious HSTS flag will be shared among all of
the users of the protocol.

To inform our design decisions, we survey the current state of
HSTS deployment, including the distribution of expiry times. We
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use the Majestic Millions index of the most popular websites based
on incoming links.

One immediate consideration of a protocol like this is privacy; if
users share data on websites they visit, it is essential to introduce
a privacy mechanism such that users do not automatically reveal
which websites any one user has been browsing. To this end, the
core of our protocol involves privacy-preserving data sharing, i.e., a
protocol to ensure data can be reliably reported from many clients
to a server without leaking the data of any one individual to the
server. We have selected the RAPPOR protocol [16] to provide
local differential privacy for user submissions. RAPPOR has the
necessary flexibility to enable us to use broad concepts from the
protocol while also allowing us to alter and build on top of it to
adapt it for this specific application. This includes a double Bloom
filter construction, which reduces false positives in our protocol
and improves its resilience to Sybil attacks. The protocol design
prevents it from degrading the user experience even in worst-case
scenarios.

We perform a simulation of the protocol which allowed us to
select the best parameters for the protocol and demonstrated that
it can efficiently model up to 150,000 websites.

The CoStricTor protocol provides additional information to the
user in a potential man-in-the-middle downgrade attack. It replaces
the standard HTTPS-only warning with a variant of the HSTS
warning, informing the user that continuing to the page caries
a higher risk than the more common HTTPS-only warning. The
protocol does not increase the total number of warnings a user
will see. As well as helping users directly, the protocol assists with
detecting potential malicious exit nodes in the Tor network, which
may help prevent future attacks.

Section 2 provides relevant background information on Tor, Tor
Browser and HSTS which are necessary for understanding our pro-
tocol and why it is useful. We describe our protocol in section 4, in
which we provide a discussion on various building blocks which
make up our protocol before describing the detailed processes of the
protocol’s operation. The simulation which was used to evaluate
the protocol is discussed in section 5, and we provide the results
which both prove the usefulness of the protocol and describe the
appropriate parameters which are needed to operate an implemen-
tation of the CoStricTor protocol. We provide a discussion on the
usefulness of the protocol as well as its limitations in section 6
Related work and conclusions are given in sections 7 and 8.
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2 BACKGROUND
2.1 HSTS
HTTP Strict Transport Security or HSTS is a protocol by which
websites can instruct Internet browsers to only interact with them
via a secure HTTPS connection [22]. Websites communicate their
HSTS policy to browsers by setting the corresponding header in
their HTTP response to a user request. When the browser encoun-
ters the HSTS header, it will store the HSTS status of the website
and only allow future connections to be HTTPS. Forcing HTTPS
connections prevents both passive eavesdropping attacks and active
man-in-the-middle attacks. If a website known to have HSTS does
not support HTTPS, the browser displays a warning page which
does not allow the user to continue, due to the high risk of an attack
aiming to downgrade the security of the connection.

The HSTS header must include a max-age directive which in-
forms the user’s browser how long to store the HSTS status. Web-
sites can revoke their HSTS status by setting the expiry time in the
header to 0 and waiting for any previously stated expiry time to
elapse.

HSTS requires a user to first navigate to a website over a valid
HTTPS connection for future connections to be protected by HSTS.
To help mitigate this limitation, all major browsers (including
Google Chrome, Chromium derivatives, and Mozilla Firefox) in-
clude the HSTS preload list [8]. The preload list is distributed with
the web browser and updated when the web browser is updated.
When initiating a connection, browsers will check both the saved
HSTS list and the preload list. The preload list allows website admin-
istrators to mark their websites as having HSTS to all users of the
browser. The recommended value for HSTS expiry is 2 years and
the preload list requires this value for a website to be included [8].

In practice, the overall number of sites submitted to the preload
list is low, therefore it is of limited benefit. Many industries and
types of websites were found to be poorly represented in the preload
list [31]. Although the preload list has grown to approximately
190,000 entries at the time of writing, of which the Tor Browser
incorporates 138,000 entries, it scales poorly with the size of the
public Internet. Of the top million websites by referring subnets [6],
only 14,000 are included in the preload list.

HSTS is an actively recommended security feature for the web.
Mozilla web security guidelines include HSTS as “mandatory for
all websites”, as HSTS has high value and low implementation diffi-
culty [27].

2.1.1 HSTS Supercookies. An unfortunate side-effect of HSTS is
its potential as a tracking system. By saving the HSTS status of mul-
tiple subdomains, a browser can be manipulated to store a unique
identifier which will implicitly be sent to the website on subsequent
connections. This may be used as a form of web tracking [22, Sec.
14.9]. Such tracking techniques, which eschew the normal controls
for client-side data retention, are termed “supercookies” [33].

To create an HSTS supercookie, a website can include dummy
resources from multiple subdomains. On a user’s first visit, all con-
nections to subdomains will be made over HTTP, identifying the
user as a new user. The server can set a unique combination of
HSTS flags for the subdomains in its responses to the user. There-
fore, each subdomain’s HSTS entry can store one bit of identifying

information. On subsequent visits, the pattern of HTTPS and HTTP
connections to subdomains based on the unique combination of
HSTS flags stored in their browser can identify the user.

Tracking through this method becomes even more effective if
it is performed by actors whose resources are loaded on multiple
websites, such as ad networks or content distribution networks. In
this case, not only can a user be identified on one site, they can also
be tracked across the web.

2.2 Tor
Tor is a system for anonymous communication over the Internet.
Tor nodes, or relays, create an overlay network on the Internet,
called the Tor network, through which anonymous network traffic
can be routed. Data sent through Tor is encrypted using multiple
layers of encryption and sent through nodes which decrypt a single
layer at a time. Each layer of encryption only holds routing informa-
tion for the next relay, hiding the true destination and origin of the
packet from the intermediate nodes. This technique is termed onion
routing. To servers outside the Tor network, connections appear
to originate from the last Tor node that traffic was routed through,
the exit node. This system protects the anonymity of the user and
hides their online activity.

The configuration of the Tor network is decided through consen-
sus by a set of directory authorities whose IPs are hard-coded into
Tor clients [5]. The consensus is approximately 2.8 MB or 580 kB
compressed. Once downloaded, consensus data is cached while it
is valid and persists between sessions. Whenever a client initiates
a new connection, it uses the configuration to pick a new set of
relays to route their traffic.

Some nodes in Tor are designated guard nodes which are con-
sidered more trustworthy than other nodes. These nodes are used
as the entry, or first node in a users connection to Tor. Tor clients
select a single guard node to be used for a period of time and all
connections made will begin with that guard for the duration.

The Tor network has been subject to multiple attacks which
aimed to compromise the encryption of outgoing connections. Due
to its position, the Tor exit node can perform man-in-the-middle
attacks when forwarding packets to the destination server. SSL strip-
ping attacks, in which a man-in-the-middle prevents the upgrade
from HTTP to HTTPS have been used to deanonymize communi-
cations [28] and to rewrite cryptocurrency transactions [1]. Due to
the outsized impact of bad exit nodes, Tor provides a mechanism
to report potentially suspicious exit nodes [37].

2.2.1 Ethics of Tor. The system proposed in this paper will reduce
Tor’s vulnerability to an attack that is being actively exploited for
criminal purposes, however in principle the same attack could be
applied by law-enforcement against activities that are unlawful in
their jurisdiction. This tension raises ethical issues for research in
anonymous communications and more generally for information
security. Studies on this topic include the United Nations Human
Rights Council finding that anonymous communication is funda-
mental to the human rights to freedom of expression and privacy,
despite the potential of harm [38]. The American Association for
the Advancement of Science similarly conclude that anonymous
communication is morally neutral as a fundamental precept [4]. It
is also important to consider that criminals have a wide range of
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options for anonymity, such as through botnets and bullet-proof
hosting, so any weakness introduced in Tor would impose limited
constraints on criminals while severely harming the interests of le-
gitimate users of anonymous communication systems. Despite the
popular association between Tor and criminality, Jardine et al. [24]
estimate only a small proportion of Tor traffic is potentially ma-
licious (6.7%), with the proportion being lower in countries that
impose restriction on political speech and freedom of expression .
While onion services draws public attention for their potential to be
abused for criminal purposes, our paper does not affect this feature
of Tor. In any case, according to the Internet Watch Foundation, less
than 1% of domains hosting child sexual abuse material (CSAM) are
.onion domains hosted on the Tor network [23]. For these reasons
we consider this research to be ethically justified.

2.3 Tor Browser
Tor Browser is a web browser which routes users’ Internet traf-
fic through the Tor network. Tor Browser is built on Firefox and
integrates further features that increase the privacy of the user.
By default, it hard-codes identifying information the browser ex-
poses to servers, which creates a standard fingerprint shared by all
Tor browser users. To further impede tracking attempts, it deletes
local data between Tor sessions, including HSTS flags. Although
this behaviour prevents the use of HSTS supercookies to track Tor
Browser users across sessions [30], it negates the intended role of
storing HSTS flags long-term.

As of version 11.5, Tor Browser defaults to HTTPS and displays
a warning page before allowing users to continue over an insecure
HTTP connection [35].

2.4 Differential Privacy
Differential privacy is a definition of privacy first introduced by
Dwork et al. in 2006 [15] and it has been widely adopted in privacy-
preserving data collection and manipulation.

Differential privacy is a property of a mechanism for aggregate
data retrieval. It protects any individual’s privacy by making any
observed output of a mechanism operating on the data almost as
likely as the output of themechanism if the individual’s datawas not
present. More formally, mechanism𝑀 is said to be 𝜖-differentially
private if the following inequality holds for any two neighboring
databases 𝐷 and �̂� that differ in one item and for all subsets 𝑆 of
the possible outputs of𝑀 , i.e., 𝑆 ⊆ Range(𝑀):

Pr[𝑀 (𝐷) ∈ 𝑆] ≤ 𝑒𝜖 · Pr[𝑀 (�̂�) ∈ 𝑆]
The privacy parameter 𝜖 , also termed the privacy budget provides

a quantifiable measure for the relative privacy loss.
An important property of differential privacy is immunity to post-

processing. Differentially private data can be released in full without
any further degradation of privacy, regardless of any auxiliary data
or computational resources an adversary might have.

Differential privacymechanisms are implemented by introducing
random perturbations, such as adding randomly sampled noise, to
create uncertainty over the data which produced an observed result.
In the centralized setting, the data will be aggregated first and then
have a DP mechanism applied to produce the desired results, thus
it requires a trusted collector; in the local setting, data is perturbed

to ensure differential privacy before being sent to a collector, thus
dispensing with the need for a trusted collector.

The idea of perturbing responses before they are collected pre-
dates differential privacy by decades [40]. Randomized response
was introduced to avoid the bias inherent in research into sensitive
topics. In the local setting, differential privacy ensures that even
if the aggregator and all participants bar one collude, they cannot
compromise the value submitted by an honest participant. This
comes at a cost to utility as the overall noise introduced by local
differential privacy is higher than in the centralized setting.

2.5 RAPPOR
RAPPOR [16] is a protocol for private aggregate data collection
introduced by Erlingsson et al. in 2014. The protocol was integrated
into the Google Chrome browser [9] but was subsequently removed.

RAPPOR has two phases. Firstly, a reporting phase in which user
data is encoded into a Bloom filter, which is randomized for local
differential privacy, and sent to the server where it is aggregated.
Secondly, a decoding phase in which the aggregated reports are
processed to obtain the relevant statistics.

2.5.1 Reporting. RAPPOR aggregates reports which encode data
over a specified time period. A client will report a particular value
so it can be tallied, without revealing it to the server. To send a
value to the aggregation server, it is inserted into an empty Bloom
filter 𝐵 of size 𝑘 .

RAPPOR provides privacy by randomizing the Bloom filter lo-
cally in two steps. It first generates a permanent randomized re-
sponse (PRR) 𝐵′, which will be used for all further reporting of the
same data. See [16] for details on how PRR is computed using the
privacy parameter 𝑓 .

Before reporting to the server, the value is again perturbed in
an instantaneous randomized response (IRR) 𝑆 . The IRR is computed
on every reporting on the value by initializing 𝑆 with all 0 bits and
then setting the value of individual bits 𝑆𝑖 as follows:

𝑃 (𝑆𝑖 = 1) =
{
q, if 𝐵′

𝑖
= 1.

p, if 𝐵′
𝑖
= 0.

(1)

where the probabilities 𝑝 and 𝑞 are parameters of the RAPPOR
protocol. The client will finally send the IRR 𝑆 to the server, where
the set bits are aggregated with all other responses.

This system preserves the deniability of each report from ran-
domized response and introduces longitudinal privacy so that even
over multiple reports of the same value, the reports cannot be cor-
related and an averaging attack cannot be performed to infer the
underlying value. Our protocol omits the PRR step, as described in
section 4.3.1.

2.5.2 Decoding. Upon receiving reports from clients, the server
tallies these reports to get the overall number of bits set, accumu-
lating the individual instances of Bloom filters into one counting
Bloom filter The true counts of these bits in the filter can then
be estimated (see the appendix of [16] for more details). From the
estimated counts RAPPOR produces a best-fit distribution over a
dictionary of known values using regression. Our protocol omits
the regression step, as described in Section 4.3.4.
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2.5.3 Hash Functions. RAPPOR uses multiple hash functions to
insert the data into Bloom filters. A higher number of hash functions
ℎ reduces the chance that two distinct elements map to exactly the
same bits, reducing false positives – but decreases the maximum
number of items that can be reliably stored before false positives
start increasing again. The same set of ℎ hash functions is used to
check membership of the set. Our protocol does not deviate from
RAPPOR in how it uses hash functions. As we expect many more
insertions compared to the size of the filter, the optimal value of
ℎ is always 1, therefore, we omit ℎ from further discussion. For
additional information on ℎ, see [16].

2.5.4 Privacy. Reporting data through RAPPOR, as used in CoStric-
Tor, provides local differential privacy with

𝜖 = log(𝑞(1 − 𝑝)
𝑝 (1 − 𝑞) )

Using higher values of 𝑝 and lower values of 𝑞 introduces more
noise to reports but reduces accuracy. For additional information
on 𝜖 , see [16].

3 DATA COLLECTION
To properly evaluate our protocol, we required accurate and up-to-
date data on the deployment of HSTS. We performed a survey of
popular websites to gain insight into the current state of HSTS on
the web.

In particular, we aimed to answer two specific questions:

• Of themost popular websites, what percentage deployHSTS?
• Of these, what expiry times are most commonly used?

For surveying the most popular websites, we used the Majestic
Million list of websites [6]. This is a freely available index, based
on the number of other domains referring to the host. We then
deployed the zgrab utility [34] to perform a minimal scan: a single
HTTP request for the root of each website, producing minimal
load on the services. The only data stored was HSTS headers. As a
one-off scan with a single request, an opt-out mechanism would
not have had any effect. This would have been offered if we planned
any further scans. However, we omitted to provide information to
web administrators about the purpose of our scan, deviating from
best practices. We deemed there to be no chance of overwhelming
the network infrastructure of these websites with our scan due to
their popularity.

We observe that approximately 15% of the top 1 million websites
have HSTS enabled. For HSTS to be effective, the expiry time must
be long enough for users to return to the website. A proportion of
websites surveyed have expiry times that are too short for this to
occur. This can be partially explained by some websites being in the
process of rolling out HSTS. Best practices recommend expiry times
start small – a few minutes – to avoid bad configurations being
stored by browsers, then increased gradually to the recommended
2 years [8]. Further to this, 9322 of the sites surveyed do have HSTS
enabled but with an expiry time of 0, thereby entirely disabling
HSTS. The vast majority of HSTS enabled websites have an expiry
time of either 6 months, 1 year or 2 years.

This data, as wewill discuss later, is critical in properly evaluating
our protocol.

Table 1: Frequency of HSTS expiry times

Expiry time (seconds) Equivalent to Occurrences

31536000 1 year 70,014
63072000 2 years 19,248
15768000 6 months 10,087

0 HSTS disabled 9,322
15552000 180 days 7,654

300 5 minutes 7,399
7889238 91 days 5,295

120 2 minutes 2,861
2592000 30 days 2,840
15724800 182 days 2,614

86400 1 day 1,584
10886400 126 days 1,535
16000000 185 days 1,451
16070400 186 days 1,420

43200 12 hours 1,214
31557600 1 year, 6 days 1,168
604800 7 days 1,067

600 10 minutes 835
3600 1 hour 803

31556926 1 year, 5 days 722
31622400 1 year, 1 day 665

4 PROTOCOL
As long as there are a significant number of websites accessible
only over HTTP, Tor Browser will permit unencrypted traffic be-
tween the exit node and destination server, introducing the risk of
tampering or eavesdropping. HSTS was designed to protect against
these risks. To protect users’ anonymity, Tor Browser deletes local
data after each session, thus HSTS is effectively disabled for Tor
Browser users.

The goal of the CoStricTor protocol is to reduce this risk through
the browser forcing encrypted HTTPS connections when the web-
site supports this. Specifically, the protocol will allow Tor Browser
to record the HSTS and HTTP status of websites in a series of
privacy-preserving Bloom filters which are shared with other Tor
Browser users, such that future visitors to the website can force
the use of encrypted HTTPS when possible. Not only does this
approach mitigate the weaknesses introduced by Tor Browser dis-
abling persistent HSTS records, but it also goes further than HSTS
by protecting Tor Browser users visiting a website for the first time,
much like the preload list does.

As we discuss our changes and adaptations from the original
RAPPOR protocol it is essential to note the fundamental differ-
ences in the layout of our usage. The typical usage of RAPPOR, as
described by the authors, is one where data from a known set is
submitted to the protocol.
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In contrast to this, our protocol features an unbounded and
unknown set of possible strings, website domains and subdomains.
The strings are not known on configuration, but the relevant domain
is known to the user when making a query. This setup reduces some
complexity in that we do not need to reconstruct the distribution of
all strings using regression. This also changes the role of the central
server in our setup. A typical RAPPOR server performs regression
on this data to produce useful statistics. Our protocol moves the
decoding process back to the user so that the user is both a reporter
of data and a decoder. This is helpful in maintaining the privacy of
users’ queries on the data.

4.1 Basic Overview
There are three actors in our protocol: the user (acting as a re-
porter and a decoder), the Tor guard nodes, and the Tor directory
authorities.

As decoder, a user must first download the current protocol state,
which they can obtain alongside the Tor consensus. Whenever the
user visits a website, they query the protocol state. If the protocol
indicates thewebsite has been reported as havingHSTS, the browser
must behave as if it previously encountered an HSTS flag for the
website. Due to the probabilistic nature of the protocol, we allow
users to override this restriction by clicking through a warning
page. To ensure that the protocol does not permit fingerprinting
Tor Browser users, all user must participate in this phase to present
identical information across all clients.

Once the website has loaded, if the site does provide HSTS flags,
the user’s second role begins. Upon seeing this HSTS flag sent by the
server, the protocol encodes the domain name as a submission for
the server and perturbs the data according to the privacy parameters
to preserve the user’s privacy. At the start of the session, the client
randomly selects a guard node that is distinct from the user’s current
guard. All reports for the duration of the session are sent to this node
over a new Tor circuit. The guard nodes periodically report their
collated reports to a directory authority where it can become part of
the latest consensus. The use of a single node for reports allows the
use of anonymous tokens for submissions, which mitigates the risk
of denial of service, as detailed in 4.3.7. Opting out of the reporting
phase is possible but lower volumes of reports will degrade the
performance of the protocol.

The nature of Bloom filters, combined with the perturbation
introduced to achieve local differential privacy, results in a protocol
that is probabilistic. Domain names which are reported many times
will likely manifest as true positives in queries; domains which
are reported less may be lost in the noise. It is not a design goal
of this protocol to guarantee full knowledge of websites’ HSTS
flags to users. Instead, we aim to increase the number of users who
benefit from HSTS and increase their security and privacy, while
not compromising user privacy.

4.2 Threat Model
Similarly to the original threat model against Tor presented in [14],
we assume that an adversary can compromise some proportion
of nodes. This includes malicious Tor exit nodes that can perform
SSL downgrading connections which compromise users’ security
and privacy. The primary goal of CoStricTor is to provide HSTS to

Tor Browser users which can protect against malicious exit nodes
without compromising privacy.

Due to the local differential privacy of the protocol, any indi-
vidual submission does not divulge which domain was visited by
the user to the server or to any other user. The immunity to post-
processing property of differential privacy means that no adversary
can perform further processing on the distributed filters or the
individual submissions to reveal the domains that were visited by
any individual user.

Although more trusted than other nodes, we assume a small
proportion of guard nodes can be subverted. Submissions in the
protocol are distributed randomly across all the guard nodes in the
network, as clients select them uniformly at random. Directory au-
thorities can therefore expect a similar number of submissions from
each guard, any major deviation from this average will be dropped
by the directory authority and that data will not be recorded by the
protocol.

The Tor network assumes that a majority of directory authorities
are honest. Our protocol differs in that a single malicious directory
authority can do damage to the protocol proportional to the amount
of data reported to them. Just as directory authorities can detect
anomalies in the data reported by guard nodes, directory authori-
ties can detect issues in data reported to them by other directory
authorities.

In considering the robustness of our protocol, a key failure sce-
nario is denial-of-service (DoS) attacks. False reporting to the proto-
col could prevent users of the protocol from loading legitimate sites
that do not offer HTTPS. DoS attacks through HSTS are a security
consideration in the HSTS standard [22, Sec. 14.5] but our protocol
introduces another vector.

Although Sybil attacks are problematic for any data aggregation
protocol, the anonymity of the Tor Browser makes Sybil attacks
on our protocol difficult to detect and prevent. We must, therefore,
integrate strong denial-of-service protection, to avoid degrading
the protocol’s usefulness.

We use two distinct denial of service protections in our protocol.
We employ Privacy Pass [11] to prevent adversaries from reporting
large amounts of false data in a denial of service attack. This is a
rate limiting technique which stops opportunistic attackers from
disabling the protocol. We detail this protection in 4.3.7. We also
integrate DoS protection into the core design of the protocol to
mitigate the damage a DoS attack will have if it is successful. This is
achieved by focusing on reducing the rate of false positives overall,
which is detailed in sections 4.3.5 and 4.3.6.

4.3 Protocol Design
4.3.1 Privacy. Tor Browser is designed to protect anonymity and
does not save data between sessions which includes HSTS flags.
This effectively disables HSTS for Tor Browser users. Our protocol
creates a common set of HSTS flags across the entire Tor Browser
userbase, so HSTS cannot be used as a tracking vector but users
benefit from the security and privacy HSTS provides.

To ensure protection for multiple submissions from a single user,
the RAPPOR protocol uses a permanent randomized responsewhich
is stored long-term and used for reporting on the same data over
time. This is not possible when reporting data with our protocol,
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Figure 1: Protocol workflow

as Tor Browser removes user data between sessions. This is, in fact,
not an issue precisely because of the anonymity provided by Tor.
Different protocol submissions cannot be linked to the same user
as, even within the same session they will be made over different
Tor circuits.

Thus, it is not possible for an adversary to defeat the differ-
ential privacy guarantees over time and the longitudinal privacy
protection offered by PRR is not needed. Therefore, our protocol
is equivalent to ‘One-Time RAPPOR‘ from [16], despite multiple
submissions of the same data from a single user being possible, and
provides the same local differential privacy.

Local differential privacy protects each submission sent to the
server. As the aggregate data is differentially private and immune
to post-processing, it can be distributed to users. The user performs
queries locally, eliminating the need for a private mechanism to
query the central data and allowing multiple queries to be per-
formed without a cost to privacy.

4.3.2 Expiry of HSTS. HSTS flags come with an expiry time, and
as such, it is necessary to accommodate this in our protocol. As
the presence of a site in the aggregate counting Bloom filter is
probabilistic, and it contains no other information other than the
existence of the URL in the set, we have no way to remove websites
from the set and no direct way of storing the expiry time stated
by a website. The length of expiry time is effectively the longest
time the user can go without using the website before the HSTS
flag disappears and need to be reapplied. Conversely, the expiry
time is also the shortest amount of time a website will have to wait
after disabling HSTS before they can switch off HTTPS. In general,
disabling HSTS and HTTPS is likely an infrequent occurrence, but
it is mandated by the HSTS specification and so must be supported
by our protocol.

Expiry times are handled by storing HSTS data for a set period
of time, then discarding it. We first decide on a protocol-wide HSTS
expiry time which will be used by all entries. We then divide the
expiry time into two epochs. Expiry time is implemented by storing
two different parallel instances of the aggregate data, each repre-
senting one epoch’s worth of HSTS entries. Filter set A represents
the current epoch and all user submissions are aggregated into it;
filter set B represents the previous epoch and it is read-only. When
checking if a domain is present, the protocol queries both sets of
filters A and B. If the domain occurs in either filter, it is considered
present. At the end of an epoch, the read-only filter B is discarded,
filter set A is marked as read-only, and a fresh empty set for the
new epoch is initialized.

In this system, once a website administrator turns off HSTS,
it will disappear from the protocol after at most 2 epochs. The
protocol will not produce spurious warnings for websites that have
disabled HSTS, assuming the web administrators act according to
the specification.

Websites with anHSTS expiry time shorter than the epoch length
will not be reported, as they may expire or their administrators
may disable HSTS before the epoch ends.

We note that this system effectively makes HSTS expiry time
discrete. Expiry time in the protocol is either 0 (not recorded) or is
equal to the epoch length. The worst case outcome of this is that
users may receive less protection if a site is not visited enough
between epochs for it to register. Even if the site administrator has
a set a longer expiry time, it will not be represented. This however
leaves users no worse off, as without the protocol they would not be
able to make use of HSTS at all. Similarly, users visiting sites with
expiry times lower than the epoch will not receive HSTS protection,
but once again they are no worse off as they would not receive
protection without the protocol.
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Figure 2: Protocol data is stored in two different epochs in
order to model HSTS expiry times

The HSTS data we collected shows an epoch value of 30 days
provides a good balance between gathering sufficient data and not
recording websites with a low expiry time.

4.3.3 Adapting Protocol Parameters to Observed Data over Time.
The protocol parameters can be adjusted when a new filter set is
initialized at the start of an epoch to better reflect the observed
data. Critically, the protocol adapts the Bloom filter sizes based
on the number of submissions in the previous epoch, which is
used as an estimate of submissions in the new epoch. By using the
formula derived from our simulation data we can then calculate
the appropriate filter sizes from the estimate.

4.3.4 Decision Function. Our protocol needs to output a boolean
decision when queried with the domain of a website. In order to
produce results, however, a typical RAPPOR instance fits a distribu-
tion over the full set of candidate values, which are known ahead of
time. This allows for an estimation of the data that was submitted.

In contrast, our protocol works on website domains which are
drawn from a theoretically unbounded set of possibilities. Prac-
tically, however, only a finite set will be visited by users of the
protocol during an epoch, though the set is not known ahead of
time. Only the current website being queried client-side is known.
Due to these limitations, our protocol must define a more conser-
vative decision function which estimates whether a single domain
is in the set of sites reported.

In a setting without noise and no hash conflicts, checking that the
count is positive would suffice. Although the mean noise introduced
by differential privacy to each count is eliminated from the counts,
some counts will be artificially inflated. To account for this, we
define the decision function 𝑑 . It takes a count of bits 𝑛, the number
of insertions to the filter 𝑖 , and the estimated number of distinct
websites reported𝑤 and outputs a Boolean decision. Additionally, a
decision multiplier 𝑐 is introduced to allow for tuning the function’s
output to be more or less sensitive to noise.

𝑑 (𝑛, 𝑖,𝑤) = 𝑛 >
𝑖

𝑤
· 𝑐

The decision multiplier is set empirically based on the simulation
results described in Section 5.

4.3.5 False Positives. Bloom filters are at the core of our protocol.
They are probabilistic data structures which introduce a rate of
false positives. This is further exacerbated by the noise introduced
for differential privacy. In the case of this protocol, a false positive
indication would mean a user who erroneously believes a website
has enabled HSTS when, in fact, the website does not set an HSTS
flag.

A false positive generates two possible situations. The website
may have HTTPS available: this is the less problematic situation;
while the website may never have mandated HTTPS for all its
visitors, the user can still access the website over HTTPS and they
will not have any interruption to their browsing experience. In fact,
as Tor Browser has recently implemented HTTPS-Only Mode by
default, there will be no difference to users’ browsing experience
for sites which implement HTTPS. We term this situation a ‘don’t
care false positive’.

Scenario two is that the website does not, in fact, support HTTPS.
This is an undesired outcome for the protocol. According to the
HSTS specification, the website should now be blocked and fully
inaccessible to the user. We term this outcome a significant false
positive. An attempted DoS attack would aim to produce this out-
come for target websites. Given that our protocol has a false positive
rate, we instead insert a warning page which can be overridden
by the user. This allows us to inform the user that they are likely
at risk, but also gives them the option to continue if this is a clear
false positive.

Careful parameter selection can reduce false positives while
maintaining strong utility of the protocol in upgrading websites to
HTTPS. Section 5 describes the results of simulating the protocol
and, in particular, the effects varying different parameters have on
the results.

4.3.6 Double Bloom Filter Construction. To further reduce false
positives, CoStricTor not only records sites which report HSTS
usage, but also separately records sites which do not implement
HTTPS. Thus, the protocol separately collects data for domains
with HSTS and domains without HTTPS in two aggregate counting
Bloom filters. We term the aggregate filter that collects HSTS data
as the ‘primary filter’; the aggregate filter for non-HTTPS domains
is termed the ‘secondary filter’.

Recording complementary data is possible as websites are di-
vided into three disjoint sets:

(1) Websites that support HTTPS and HSTS
(2) Websites that support HTTPS but do not have HSTS enabled
(3) Websites that do not support HTTPS
Note that websites that support HTTPS but do not have HSTS

enabled, which are the majority of websites, do not need to be
tracked as they can only produce don’t care false positives. There-
fore, by capturing two reduced subsets of all possible websites, we
can efficiently create complementary data that can be used to detect
false positives and is resilient to fake submissions.

The addition of the secondary counting Bloom filter changes
the submission process by making users submit websites without
HTTPS, alongside those with HSTS. The secondary filter is used
for confirmation when a result of the primary filter blocks the
user from accessing a non-HTTPS site, that is, when a query to
the protocol indicates a website as having HSTS by querying the
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primary filter but the website does not support HTTPS when the
user attempts to load it. In this scenario, the secondary filter is
queried. If the site is found in the secondary filter, that is, if it has
been reported as having HTTP previously, CoStricTor concludes
that a false positive must have indeed occurred. If the website is
not found in the second filter, the protocol concludes that HSTS
was present previously and that a man-in-the-middle downgrade
attack is occurring. This allows for an appropriate warning to be
displayed to the user.

The double filter construction also increases resistance to fake
submissions. As described in 6.1.1 detection of sites in the secondary
filter attackers ability to block users from sites. The second filter
introduces a more refined approach to potential false positives,
practically reducing the number of significant false positives, and
produces a better failure state.

4.3.7 Denial of Service. All submissions to the protocol must be
done through the Privacy Pass [29] mechanism, currently an IETF
draft. This mechanism issues a set number of anonymous tokens
after a challenge is completed. Challenges can be interactive, such
as CAPTCHA, or non-interactive, such as attestation or authentica-
tion, neither of which are suitable for Tor Browser due to privacy
concerns. An alternative to CAPTCHAs, which disrupt the user
experience and introduce a barrier to legitimate submissions, is
computational puzzles. Client puzzle introduce a minor computa-
tional cost to submissions to mitigate DoS [25]. These have the
advantage of being able to run in the background and imposing a
low cost to legitimate browsing patterns while an attempt at a DoS
will require solving a large number of puzzles.

The Tor guard node selected by the user for the session will issue
anonymous tokens, which are redeemed to submit data. This effec-
tively rate limits users who submit to the protocol, slowing down
adversaries who wish to submit bad data. It also has the additional
affect of forcing users to submit to the same guard node, which lim-
its adversaries ability to spread their attack across multiple nodes,
making their attacks more detectable. The number of tokens issued
for each challenge (CAPTCHA or client puzzle) can be adjusted to
trade-off increased protection with worse user experience.

4.3.8 Warning Users of HSTS Failures. When CoStricTor deter-
mines that a website has HSTS based on the primary filter but a
secure connection cannot be established, two possible situations
arise that require informing the user. The secondary filter, which
encodes the lack of HTTPS, is used to discriminate between the
two situations that elicit a warning.

If a website is present in the primary filter but missing in the
secondary filter, the protocol concludes that there is a risk that
HTTPS was stripped. The protocol presents a full-page warning to
the user similar to the browser’s built-in HSTS warning. Because of
the probabilistic nature of the protocol, we propose using amodified
version that allows the user to continue to the site, unlike the typical
HSTS warning which blocks access. It will briefly describe to the
user that this warning is based on crowdsourced data and that there
is a low, but non-zero possibility of errors.

In the scenario that the website is present in both filters the
protocol does not take any action and the standard HTTPS-only
mode warning page is displayed.

4.3.9 Reporting Bad Exit Nodes. An additional utility provided by
the protocol is identifying potential bad Tor exit nodes. Whenever
a site is detected as having HSTS and it does not support HTTPS,
this indicates a potential SSL stripping attack. This attack may
have been perpetrated by a bad exit node and thus each detection
counts as some evidence an exit node is bad. By reporting the
identity of every exit node involved, Tor’s operators can identify
bad exit nodes by the volume of reports received. Due to the random
assignment of exit nodes to users, there will be a baseline level of
reporting due to SSL attacks external to Tor and false positives. If
exits nodes will have a proportionally higher level of their traffic
reporting SSL stripping, it serves as strong evidence that the node
is conducting an attack. Reports of exit node identities leak none
of the users’ information and thus can be reported via a Tor circuit
to a centralized server operated by the Tor Project.

4.4 Protocol Specification
We now describe the behavior of our protocol, including the sce-
narios in which the protocol activates, as well as the exact details
of how the protocol operates. Figure 1 is a flowchart of the deci-
sions the protocol makes as a user visits a website, showing when
decoding and submission occur as well as when warning pages are
displayed.

4.4.1 The Query Algorithm in Detail. The initial phase of the pro-
tocol occurs at the start of a Tor Browser session. Just as the Tor
Browser receives the latest consensus data from the directory au-
thorities, the browser shall also receive the latest protocol data for
detecting HSTS.

This data contains a set of 4 counting Bloom filters of length 𝑘

containing noisy counts along with the count of submissions for
each counting Bloom filter. The current count is necessary for the
client to adjust the data to compensate for the added noise. Upon
receiving this data, the browser performs the following correction
for each of the 4 filters, where 𝑁 is the current insertion count for
that filter, 𝑐 is the initial filter data, and 𝑡 is the adjusted data.

𝑡𝑖 =
𝑐𝑖 − 𝑝𝑁

𝑞 − 𝑝

Performing this correction step compensates for the differential pri-
vacy noise added, and gives usmore accurate counts. This concludes
the steps required upon starting a Tor Browser session.

The main query process occurs when the user visits a website. At
first, Tor Browser will automatically check if the domain is present
in the HSTS preload list. If it is present, the protocol will not run
as neither checking nor submitting that website will be of benefit.
Otherwise, the browser will continue by running CoStricTor.

Before the request is sent to retrieve the web page, the browser
checks for the presence of the domain in the primary counting
Bloom filters of both epochs. To do this, the relevant counts are
obtained from the filters extracting the counts that match the bits
where a domain would be inserted. These approximate the number
of submissions for the domain.

The protocol’s decision function uses the counts to determine
if they indicate the presence of the item in the aggregate counting
filter.
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As discussed earlier, this function is as follows:

𝑑 (𝑛, 𝑖,𝑤) = 𝑛 >
𝑖

𝑤
· 𝑐

where 𝑛 is the count,𝑤 is an estimate of distinct websites submitted,
𝑖 is the total number of insertions and 𝑐 is a constant correction
factor which is applied. The estimated number of distinct websites
submitted is calculated by matching the number of submissions
against a standard zipfian curve. As we assume all website visits
follow this zipfian distribution, the estimate will be the highest rank
on the curve that will appear at least once given the number of
insertions.

If the website does not appear in either of the primary Bloom
filters the connection continues as normal. If however, the website
is present, we assume the site has HSTS. Subsequently, the browser
will attempt to load the webpage via a HTTPS connection. If the
website loads correctly, we need not take any further action. If the
site does not load via HTTPS, the protocol must now employ the
secondary counting Bloom filters. If the domain is present in either
of the secondary filters, this indicates some form of false positive
result. We cannot rely on the output of the protocol in this instance
so we direct the user to the standard HTTPS-Only mode warning
page. If the domain is not present in either of the secondary filters,
we have confirmed that this website usually implements HSTS and
thus the user may be at risk of a man-in-the-middle attack. We
display a custom warning page to the user informing them of the
risk of proceeding to the webpage.

4.4.2 The Reporting Algorithm in Detail. There are two scenarios
which need to be reported in CoStricTor: the user loads a domain
that has HSTS enabled or a website that does not support HTTPS.
When either of the scenarios occur, the protocol checks if the do-
main exists in the HSTS preload list and ignores it if present. The
protocol will also not report any HSTS websites that have an HSTS
expiry time shorter than the length of an epoch.

A report will then only be made if the domain has not already
been reported this session. This is prevent over-reporting when a
website is visited many times.

To construct a domain report for either scenario, the protocol
initializes an empty Bloom filter. The appropriate domain is in-
serted into the Bloom filter. Local differential privacy is ensured
by perturbing each bit of the Bloom filter according to the privacy
values 𝑝 and 𝑞. This process is identical to constructing the IRR in
RAPPOR.

This report is then sent through a new Tor circuit to the users
secondary guard node. This guard node is randomly selected at the
beginning of the Tor Browser session and must be distinct from
the users current guard in order to prevent submissions from being
linked to the user. The client constructs a new Tor circuit for every
report sent to this guard node in order to stop different submissions
being linked to the same user. Every report received by a guard
is added to their counting Bloom filter data structure containing
occurrences of each of the bits in the bit array for the current
epoch. The Bloom filters corresponding to the previous epoch are
read-only. As part of Tor’s normal operations, guard nodes will
query a directory authority server to obtain the latest consensus
periodically. While obtaining the latest version of the consensus
the guard node can now report their Bloom filter data structures to

this directory authority, and the directory authority will provide to
the guard the latest complete version of the Bloom filter data it has
obtained from the other directory authorities. Directory authorities
vote every hour on the latest version of the consensus and at this
point they will also collectively sum the Bloom filter data they have
received to obtain the definitive Bloom filter data. This version of
the Bloom filter data is then distributed as part of the consensus to
Tor clients, via their guard node.

5 EVALUATION
To find appropriate parameters for CoStricTor and to evaluate its
effectiveness, we simulated the protocol. The simulation was based
off the sample implementation of RAPPOR [20] but rewritten in
Golang to favor simulation speed and adapted to our protocol de-
sign. It has been open-sourced [13].

It allows the testing of all system parameters and provides us
with specific results on two key metrics: number of sites correctly
upgraded by the protocol, and number of sites with incorrect warn-
ings displayed by the protocol. The simulation parameters are:
Bloom filter size, the number of reports, the number of websites
from which reports can be drawn, the number of additional sites
checked, and the privacy parameters 𝑝 and 𝑞, from which the over-
all 𝜖 of the system is computed. The simulation uses the Majestic
Million list of the one million most popular domain names.

The simulation uses a Zipf distribution to estimate the popular-
ity of different websites which can be submitted. Informally, we
know that certain websites are extremely popular and see many
more visitors, whereas a huge number of sites are far less popular
and are very seldom visited. In [21], the actual distribution is esti-
mated to be a power log distribution. This is also backed up by [26]
which confirms the ubiquity of power log distributions in Internet
measurements, but, more specifically, the applicability of a Zipf
distribution, which is a special case of power log, to website pop-
ularity. Whenever a user submission is being simulated, we draw
websites from our list of domain names through a Zipf distribution
so that websites appear in submission in a manner that mirrors
the real world. Finally, to better simulate potential false positives
which occur for websites that are never submitted, the simulation
also checks an additional list of websites not submitted by any user
against the counting Bloom filters produced by the protocol. For
example, if we are considering 1,000 websites in the protocol, we
can run a simulation over this data, and then check an additional
10,000 websites to check for false positives.

Our protocol simulation works as follows: the 𝑛 most popular
websites are taken from the Majestic Million list [6]. We use esti-
mated proportions of HSTS and HTTPS sites to randomly designate
websites as HSTS, HTTPS, or HTTP. We then randomly sample
websites from the list with replacement. Samples simulate user
submissions to the protocol. If the sampled site has been designated
as having HSTS, we add this to our local Bloom filter exactly as de-
scribed in the protocol, and likewise if the website was designated
as having HTTP only.

After these steps, our Bloom filter data can be queried to simulate
users’ results when using the protocol.
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5.1 Simulation Parameters
5.1.1 𝑝, 𝑞 the Differential Privacy Parameters. These parameters
directly affect the amount of noise added to user responses. They
must be set at a level that gives the appropriate differential privacy
guarantees, while retaining utility in the submissions. We evaluate
a range of different 𝜖 values to ascertain accuracy of the protocol
with different privacy guarantees.

5.1.2 Number of Sites Modeled. The number of sites is a key num-
ber in our parameter selection. The more sites represented by the
protocol, the larger Bloom filter is needed. The key difficulty is that
the system can never know exactly how many sites are currently
being represented. By definition of this being a privacy-preserving
system it is not possible to know this number, but we can estimate
it using the total number of submissions to the protocol in a period
of time.

5.1.3 Estimated Number of Submissions. The number of submis-
sions the protocol receives will vary over time. To simulate the
protocol, we must provide an accurate estimation of the number
of submissions that will be received in one epoch. Our simulation
runs exactly one epoch of the protocol, and so we must first decide
the epoch length in order to estimate the number of submissions.
Epoch times that are too long may result in website administrators
being unable to effectively remove their HSTS status. Epoch times
that are too short provide less utility. Destroying the protocol’s
data very frequently means that the density of submissions for any
one website will be lower, and a lower number of websites will be
recorded by the protocol as having HSTS. In the simulation, we
use 30 days as our epoch length. From our earlier data gathering,
we determine that 83% of sites reporting HSTS use an expiry time
of over 30 days. Additionally, 30 days of submissions from users
provides plenty of time to allow representation of a large number
of sites. From this, we can now estimate the number of submis-
sions the protocol receives in one month. Given that the protocol
is intended to be integrated into Tor Browser, we can assume all
its users would use the protocol to report websites. In a period of
30 days, Tor receives approximately 90 million connections from
users. We assume that each of these connections visits 1 website.
This is a weak assumption as many users will visit more than one
website. Therefore, over a 30-day period, we can expect approxi-
mately 90 million queries to the protocol. This is the figure used to
run simulations on the protocol.

5.1.4 Estimated Proportion of HSTS Sites. Once again, the actual
number of HSTS sites in the population of websites recorded in
our protocol is a key figure. The proportion of HSTS sites in our
population determines how much of our “estimated number of
sites” affects the size of our Bloom filter. For example, we may have
100,000 sites in our population, but if only 1% deploy HSTS our
Bloom filter only needs space for 1000 entries. For our simulations,
we use the figure 15% which we derive from the proportion of
websites with HSTS our data collection revealed.

5.1.5 Estimated Proportion of Non-HTTP Sites. As above, this pro-
portion determines how many of the sites in the population are
recorded by our secondary Bloom filter. Consequently, a higher pro-
portion of non-HTTP sites will require a larger secondary Bloom

filter. Considering the distribution of site popularity, our protocol is
much more likely to deal with popular websites and less likely to be
faced with less popular sites. Given that a strong majority of popu-
lar websites use HTTPS, we can expect a relatively low percentage
of sites considered to have no HTTPS available. For our simulation,
we estimate the proportion of non-HTTP sites to be 20% [39]. A
mismatch between this estimate and real proportion would lead to
a poorly sized secondary Bloom filter, affecting accuracy of false
positive detection. However, a real deployment of the protocol can
dynamically update the secondary filter size based on the number
of submissions received in the previous epoch.

5.1.6 Bloom Filter Size. Larger Bloom filter sizes, result in fewer
false positives overall. If the filter size is larger for the same number
of entries, there will by definition be less overlap in the bits of the
Bloom filter and fewer false positives accordingly.

5.1.7 Decision Function Correction. As discussed, the protocol re-
quires a decision functionwhich includes amultiplicative correction
term. We estimate the correction term by running the simulation
with various candidates for the correction term until we arrive at
the value which produces the best results. These values are 0.045
for querying the primary filter and 0.07 for querying the secondary
filter. The values scale with with the proportion of websites consid-
ered, meaning that, for the simulation, the secondary filter has a
higher value but a lower actual threshold. This biases the simulation
towards avoiding false positives. The result is that false positives
in the primary filter can be mitigated by the secondary filter more
easily.

5.2 Results of the Simulation
We run the simulation with a range of different numbers of sites
being considered. In a simple case, we can consider 500 of the top
websites. Using modestly sized Bloom filters we can easily provide
accurate results with a high number of upgrades, and a very low
number of false positives. The primary goal of our simulation was
to maximize the number of sites considered without sacrificing
accuracy. As we discussed, there is effectively an infinite number
of sites that could be visited, but, in practice, we can expect that
only a small number of sites are visited with high regularity and by
many users. The higher the number of sites considered, the closer
we can approximate the actual set of sites that the protocol might
be asked to record in a real deployment. The primary restricting
factor on this is the number of submissions made to the protocol in
a certain time period.

The first task of the simulation is to establish which size of Bloom
filter is appropriate for the protocol. We can see in Figure 3 the
results of the simulation when considering 50,000 websites while
varying the size of the filter as well as values of 𝜖 . At very low
Bloom filter sizes performance is poor, but quickly increases to a
maximum. As filter size increases beyond this, the number of up-
grades slowly declines despite improving false positive rates. This
can be explained by observing that, for a fixed p, the number of 0
perturbed into 1 increases roughly with the size of the filter. Increas-
ing the size of the Bloom filter increases the overall chance that,
any zero bit in a report is perturbed. This implies an optimal filter
size exists for any particular setup, given an accurate estimation of
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Figure 3: Increasing filter size gives more accurate results
until an optimal point past which accuracy declines

the number of sites being covered and the number of submissions
that will happen.

The filter size affects the amount of data which must be dis-
tributed to every Tor client as well as the size of the data which is
reported to guard nodes. From Figure 3 we estimate 40,000 as a typ-
ical filter size for the system. We conducted additional simulations
to extract the exact Bloom filter data of several runs of the protocol.
This allows us to check the actual size of the data which needs to
be transmitted. Our benchmarks show the total size of the 4 filters
when transmitted is on average 130 kB for a filter size of 20,000 and
260 kB for filter size of 40,000, when compressed using the standard
Brotli algorithm; the mean size of compressed submissions is 1.4 kB
and 2.8 kB, respectively.

The next consideration is the privacy parameters. Differential
privacy is calculated in the same way as RAPPOR: 𝜖 = log( 𝑞 (1−𝑝)

𝑝 (1−𝑞) )
from which we derive

𝑝 =
𝑞

(1 − 𝑞)𝑒𝜖 + 𝑞
Recall that 𝑝 is the probability of any true 0 bit being reported as

a false 1, and 𝑞 is the probability of any true 1 bit being reported as a
1. We explore the space of values of 𝑝 and 𝑞 for a set value of 𝜖 . The
results of these simulations (Figure 4) show little variation, which
indicates that the choice of 𝑝 and 𝑞 need only achieve a desired
value of 𝜖 and that 𝑝 and 𝑞 are not a target for optimization for a
fixed 𝜖 .

In order to produce a clear idea of the number of sites that we
can accurately represent, we compare the maximum number of
sites we can consistently represent for different values of 𝜖 . For this,
we must also obtain the best-suited value for filter size for each
combination of 𝜖 and number of sites being represented. We define
a function 𝑓 which produces the optimal value of Bloom filter size
𝑠 for a given 𝜖 and𝑤 , the number of sites being considered, from a
set of candidates sizes 𝑆 , using the outputs of multiple runs of the
simulation:

𝑓 (𝑤, 𝑆, 𝜖) → 𝑠

Figure 4: For the same 𝜖, differing combinations of 𝑝 and 𝑞

produce negligible difference

In this context, we can consider the simulation a function that
given 𝑤 and a pair of values, 𝑠 ∈ 𝑆 and 𝜖 , produces values: 𝑢, the
number of HSTS upgrades, and 𝑑 , the number of HTTP sites that
are falsely blocked.

If the protocol returned perfectly accurate results we could set
𝑓 to return the maximum number of upgrades as long as false
positives are zero, but this is, of course, impractical. By allowing a
small number of false positives, we can obtain much much better
results for number of upgrades. The optimal definition of 𝑓 depends
on the associated costs of a spurious warning page and the benefits
of an HSTS upgrade. We consider finding an optimal definition for
Tor Browser to be future work. Choosing a conservative definition
of 𝑓 can keep false positives very low, but greatly restricts the
number of upgrades we can provide. Similarly, we could also define
𝑓 to allow much more false positives which would allow a much
greater number of upgrades but would face users with a much
greater number of false warning pages.

To evaluate the protocol, we choose the following definition of
𝑓 , which ensures that the number of false positives is at most a
quarter of the number of upgrades.

𝑓 (𝑤, 𝑆, 𝜖) = argmax𝑢
𝑠∈𝑆

simulation(𝑤, 𝑠, 𝜖), subject to 𝑑 <
𝑢

4

5.2.1 Final Results. By applying 𝑓 to a range of inputs we obtain
data showing the best results our protocol can produce for any
value of 𝜖 and the number of sites being considered. In Figure 5 we
can see the results from epsilon values 1–9 and sites values up to
160,000. This data is the culmination of our protocol evaluation and
shows the best results we can achieve given our assumptions.

It is important to note that even in an ideal situation, the number
of sites upgraded does not scale linearly with the number of sites
considered. This is a result of the Zipfian distribution of popular
sites, which exhibits a long tail.
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Figure 5: Depending on the value of 𝜖, the protocol can only
a model a certain numbers of websites before false positives
are too high. In this figure an excessive ratio of false positives
to upgrades reduces the upgrade number to 0.

6 DISCUSSION
The simulations show that the protocol can model up to 150,000
websites with reasonable differential privacy guarantees, and po-
tentially much more if 𝜖 is relaxed further. The protocol provides
10,000 upgrades to HSTS with 2500 false positives. The ratio of
upgrades to false positives can of course be reduced with a more
conservative definition of the selection function 𝑓 . The limiting
factor is the number of submissions; with a greater number of users
of the system, we can accurately model more websites which means
we can more closely approximate the actual number of websites
that are visited by users. The protocol will also perform better as
the number of HSTS enabled sites continues to increase.

The protocol can bring quantifiable security benefits to Tor
Browser users. When CoStricTor accurately presents a site as hav-
ing HSTS, it provides all of the benefits that HSTS usually brings,
including removing the ability for an adversary to perform SSL
stripping attacks. Although Tor Browser now implements HTTPS-
Only Mode by default, if an adversary attempts an SSL stripping
attack, the user will be presented with a more accurate warning
page indicating to them that the site once had HTTPS and no longer
does, replacing the HTTPS-only mode warning which simply states
that the site currently does not have HTTPS. Users will never be
faced with more warning pages than they would see without using
the protocol.

HTTPS-Only warnings have relatively frequent occurrence as
a user browses the web and they can only provide a non specific
warning to users, sites which do not implement HTTPS are not
necessarily malicious and often the best course of action for the
user is to click through the warning. In contrast, a HSTS warning
from our protocol shows the user that there is a real danger from
the site they are about to visit. The relatively low false positive rate
ensures that users can have a high confidence there is a danger
from this site and it is unlikely to be something they should click
through.

We note that not only does our protocol overcome Tor Browser’s
inability to use HSTS, it also protects Tor Browser users visiting a

website for the first time. HSTS, by itself, employs a ‘trust on first
use’ paradigm where users are not protected the first time they visit
a website. CoStricTor overcomes this issue since other users may
have already reported the website as implementing HSTS.

The benefits of the protocol come at a cost to increased traffic
on the Tor network to aggregate and distribute the filters, and ad-
ditional complexity in operating a guard node. The communication
cost depends on the filter size. Our benchmarks show a user needs
to initially download 130 kB of data for filters of size 20,000 or 260
kB of data for filters of size 40,000, as these sizes provide adequate
performance. For comparison, the compressed size of the consensus
is approximately 580 kB. Although this increases the size of the
initial download, the filter set for the previous epoch is read-only
and non-specific, therefore can be cached across sessions, halving
the size of subsequent downloads to update the filter set for the
current epoch. The overall increase in Tor network traffic from
submissions and filter downloads is not significant compared to
the total traffic over the Tor network which is over 250 Gbit/s [36],
although it increases the load on directories and directory mirrors.
Additional traffic between guard nodes and directory authorities is
also relatively minor.

6.1 Limitations
6.1.1 DoS Attacks Can Render the Protocol Ineffective. The CoStric-
Tor protocol is resilient to some forms of denial-of-service attacks.
Opportunistic attackers will be deterred by the Privacy Pass mech-
anism. Attackers with more resources can still overcome this rate
limit and attempt to perform a DoS attack.

There are two potential attacks the CoStricTor system. Attackers
can either submit false entries to the primary Bloom filter, or to
the secondary Bloom filter. Erroneous entries in the primary filter
can make users avoid visiting certain websites by producing false
warning pages on non-HTTPS websites. This attack can only be
successful if the website being targeted has not been sufficiently
submitted to the secondary filter, otherwise any false results gen-
erated from the primary filter will be disregarded, which makes
it ineffective against popular websites. Erroneous entries in the
secondary Bloom filter can negate the utility of the protocol and
potentially allow SSL stripping attacks to occur. This second kind
of attack cannot be avoided, but is made more difficult by the im-
plementation of the Privacy Pass mechanism as described earlier. If
an attacker sends many false submissions to the secondary filter
about a website, the protocol will believe that this website does
not implement HTTPS and therefore any hits in the primary fil-
ter are false positives. The Privacy Pass mechanism means that
an adversary must complete a challenge to make submissions. Al-
though the number of submissions that can be made per challenge
solved can be varied, we estimate that 20 submissions would be suf-
ficient for a typical browsing session. Using our earlier assumptions
about Tor user activity, we estimate that in order to cause a website
to appear in the secondary Bloom filter, 315,000 submissions are
needed to be made. Given 20 submissions and assuming CAPTCHA
challenges, we calculate that an adversary must complete 15,750
CAPTCHAs in order to perform this attack. At a rate of $2.99 per
1000 CAPTCHAs [2], it would cost an adversary $47.10 to perform
the attack. A secondary filter that was entirely full of false reports
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would reduce the protocol’s utility to zero. In this scenario, no util-
ity is gained from the protocol, but crucially users are no worse
off than if the protocol was not present. An attack on the primary
Bloom filter would require 202,500 submissions and would cost ap-
proximately $30.27. Any attack performed would only be effective
for a single epoch and would need to be repeated after it expires.
This additional cost must be borne by the attacker to perform a SSL
stripping attack whereas previously without the use of the protocol
there was no additional cost or barrier for performing attacks.

Malicious guard nodes could also be used to perform these at-
tacks by avoiding the Privacy Pass restrictions. Currently, there are
approximately 3,000 guard nodes, this means that any onemalicious
guard node can only alter approximately 1

3000 of the protocols data,
giving them limited power over the protocol. Similarly, a malicious
directory authority has the ability to have approximately 1

9 effect
on the protocol. Large deviations from the expected data, such as a
large spike for a single value, can be detected and discarded, helping
mitigate harm to the protocol by limiting the impact of malicious
nodes and DAs.

6.1.2 Only Effective for Very Popular Sites. As we aim for a strong
level of differential privacy for users of the system, the protocol by
definition cannot show a site as having HSTS unless there are a
large number of reports made. Additionally, as we have discussed,
the Zipfian distribution of website visits means that the most popu-
lar websites receive the vast majority of traffic, and the number of
visits falls dramatically as we consider more websites. The result of
both of these factors means that only a certain number of popular
websites can be modeled by the protocol. Regardless of any other
parameters we use for the protocol, the number of sites we can
positively report as having HSTS is limited by the level of differ-
ential privacy we require and the popularity of websites we want
to represent. This also means that there is no risk that users will
be identified by their visiting a very unpopular/niche site, as there
will not be enough reports of this site to cause it to be represented
by the protocol.

6.2 Future Work
6.2.1 Real-world Evaluation. To establish the viability of the pro-
tocol, it was evaluated through a set of simulated scenarios. A full
evaluation of the protocol would require real-world usage data.
Although the ultimate aim, deploying the protocol in Tor Browser
without real-world testing is not practical. As an intermediate step,
we aim to create a web browser add-on that runs the protocol. This
will enable us to test different aspects of the system. For example,
does the protocol introduce any noticeable increase in latency as
the system computes the HSTS status of websites?

6.2.2 Warning Pages. This system introduces additional warning
pages which can be shown to users as they browse the web. There
is significant research on creating effective warnings for common
web browsing scenarios [3, 18, 19, 32]. SSL/TLS errors cause the
browser to display well-studied, thoughtful, and effective warnings
which accurately inform the user and enable them to make the best
decision. The new warnings introduced by the protocol must also
conform to this high standard and we wish to perform a user study
to show users are correctly informed to make the correct decisions.

6.2.3 Appropriate Proportions of False Positives. The CoStricTor
protocol provides HSTS data to users which is correct with a certain
probability. False positives can always occur, however, there are also
trade-offs which must be decided when implementing the protocol.
We outlined the function 𝑓 which decides the best Bloom filter size
for a given set of other parameters. We aim to configure 𝑓 for a
real Tor Browser deployment by conducting a qualitative survey
of Tor experts. This work will allow us to set a value that provides
the most benefit for users, whilst also not burdening users with
tedious warning pages. This is crucial not just for user experience,
but also to avoid introducing warning fatigue which can devalue
the usefulness of our warning pages if they are displayed too often.

7 RELATEDWORK
Some attempts have been made in the literature to adapt RAPPOR
for different purposes. In particular, in [17] the authors attempt to
use RAPPOR with an unknown set of strings through the reporting
of n-grams of submitted strings. This technique, while effective, is
unnecessary in our scenario, since our candidate strings become
known when the user needs to query the protocol.

Private data collection in browsers has seen significant research.
Prio [10], in use in Mozilla Firefox, uses multiple partially trusted
servers for storing shares of the reported data, which can then
be aggregated to reveal the aggregate data. Prio is limited to only
encoding numerical data which can be aggregated between servers.
Prochlo [7] is the successor to RAPPOR in Google Chrome designed
to improve utility on many types of queries. Prochlo’s design is a
departure from RAPPOR as it has a three-step pipeline, with each
step intended to be performed by a separate entity. STAR [12] is
a system for threshold data aggregation intended for use in the
Brave browser. Each item becomes available to the collector only
if it is submitted at least 𝑘 times. The threshold is based on 𝑘-of-𝑛
secret sharing of an encryption key derived from the data using
a verifiable oblivious pseudo-random function (VOPRF) run by a
third party. Similarly to CoStricTor, STAR can use the TOR network
to prevent linking submissions to individuals.

8 CONCLUSIONS
CoStricTor, the protocol we have presented provides real value for
Tor Browser users by allowing users to share HSTS data for a large
number of popular websites, introducing these protections where
they were previously unavailable. This protects against malicious
Tor exit nodes attempting to downgrade connections and tamper
with data, where previously Tor Browsers’ lack of HSTS support
left users vulnerable to attacks. We show that false positive rates
are low and users will be infrequently interrupted by erroneous
warning pages. The protocol also maintains user privacy which is
a key concern of Tor users. Our simulations show that accurate
results can be given for over 150,000 websites with 10,000 HSTS
upgrades, depending on the level of differential privacy required.
We also provide a valuable detection system for bad Tor exit nodes,
preventing future attacks and assisting with the health of the Tor
network as whole.
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