
Comparison of Tor Datagram Designs

Steven J. Murdoch

November 7, 2011

1 Background

A number of performance-related problems have been noted with the current Tor architecture,
resulting in many users restricting their Tor usage to only tasks which are of high sensitivity, or
not using Tor at all. The most comprehensive analysis of Tor’s performance was performed by
Reardon [Rea08]. In this work, the author identified the major cause of latency was delay in the
output queue at Tor nodes, resulting from TCP flow control. This delay is considered higher than
necessary due to:

• High-bandwidth streams unfairly trigger congestion avoidance on low-bandwidth streams;

• Packet dropping and re-ordering on one stream triggers unnecessary delay on other streams.

It has been proposed that to improve performance, the node-to-node communication should be
by unreliable datagrams (UDP), rather than the current reliable in-order streams (TCP). This is
hoped to improve Tor performance by:

• Allowing better end-to-end congestion management;

• Reducing queue lengths on nodes;

• Preventing cell-loss on one circuit delaying cells on other circuits.

Also, moving to an underlying datagram transport may make it easier to support transport-
ing UDP in addition to TCP. More detailed analysis has been performed by Reardon and Gold-
berg [RG09].

2 Tor’s current architecture

To understand proposals for modifications to Tor, it is helpful to understand the current architec-
ture. This section will describe Tor’s protocol stack, and while it does not use exactly the same
terminology as the Tor Protocol Specification, the description chosen is designed to make it easier
to compare with alternative proposals.

2.1 Tor circuit extension

Figure 1 shows the scenario when the circuit Initiator (normally termed the Onion Proxy) has
a circuit which currently goes through one intermediate hop, and terminates on Previous. The
Initiator then wishes to extend this circuit to terminate on Next. In this scenario the active layers
are:

1



REVISION 4AA56E0 (2011-11-07 20:07:41 +0000)

Initiator

IP

TCP

TLS

Circuit

Cell Auth

Setup

IP

TCP

TLS

Intermediate Previous

IP

TCP

TLS

Circuit

Cell Auth

Setup

IP

TCP

TLS

Setup

Next

Circuit

Tor

Host

Figure 1: Protocol stack active when extending a circuit

IP The host operating system IP stack (and lower layers) is responsible for routing IP packets
between the host and other Tor-nodes.

TCP The host operating system TCP stack is responsible for providing hop-by-hop congestion
control, in-order delivery, and reliability for TLS data.

TLS The TLS stack built into Tor (OpenSSL) is responsible for providing hop-by-hop authenti-
cation, integrity and confidentiality.

Circuit The Tor circuit cryptography layer is responsible for providing confidentiality. It also
de-multiplexes between different circuits being carried by TLS connections and performs label-
switching routing.

While the Tor software on all nodes is identical, on intermediate nodes, only the layers up to
and including Circuit are active. Cells received from the incoming TLS connection are decrypted,
label-switched, and routed to the outgoing TLS connection according to its routing table.

Cell auth Tor’s cell authentication provides end-to-end integrity

Setup Tor’s setup protocol provides connection setup and management tightly coupled to
end-to-end authentication and key exchange. It is also responsible for end-to-end congestion
control.

The Setup layer can interact directly with the TLS layer when a control message is intended for
the directly connected party, or via the Circuit and Cell Auth layers when the control message
must pass through intermediaries.

2.1.1 The circuit extension process

In the case of circuit extension, the Initiator first wraps the control message with authentication
(Cell Auth), two layers of encryption (Circuit) and passes the cell down to TLS.

Intermediate then removes one layer of encryption and passes the cell down to TLS.

When Previous receives the cell from TLS, the final layer of encryption is removed, the authen-
tication tag is verified and the control message is processed. Previous will see that the control
message indicates circuit extension (RELAY EXTEND), and will send a CREATE control message
to Next.

2



REVISION 4AA56E0 (2011-11-07 20:07:41 +0000)

Application

IP

TCP

Cell Auth

Gateway

IP

TCP

TLS

Initiator Intermediate

IP

TCP

TLS

Circuit

IP

TCP

TLS

Exit

Circuit

SOCKS

HTTP

Cell Auth

Circuit

Gateway

Tor

Host

Stream Stream

Server

IP

TCP

HTTP

Figure 2: Protocol stack active when carrying data

2.2 Data transport

When an application wishes to send data over Tor, some additional layers are brought into play.

Application The client application wishes to send some stream data over Tor.

SOCKS The SOCKS layer encapsulates the stream data with a SOCKS header and carries out
the SOCKS handshake.

TCP and IP In addition to transporting TLS data between Tor nodes, the host TCP/IP stack is
also responsible for transporting the SOCKS stream to the Tor initiator (typically running on the
same host as the application).

Gateway At the Initiator, Tor’s Gateway layer receives SOCKS packets from the application
SOCKS layer, extracts the payload data, and splits it into cells. These are then encapsulated in
the same way as control messages, and passed to the Exit node via any intermediaries. This layer
is also responsible for multiplexing multiple application streams over one circuit.

At the Exit, the Gateway layer receives payload data encapsulated in cells, and sends it out to the
appropriate host via the host TCP/IP stack.

Cell Auth, Circuit, TLS These layers are unchanged as intermediate nodes cannot differentiate
between control and data transport cells.

2.2.1 The data transport process

Based on the SOCKS handshake between SOCKS on the Application, the Initiator may create and
extend circuits as necessary until it has established a circuit with the Exit.

The Gateway layer at the Initiator then then instructs the Gateway layer at the exit to make a plain
TCP connection to the host requested by Initiator, and send the application stream data to it.

3



REVISION 4AA56E0 (2011-11-07 20:07:41 +0000)

Application

IP

TCP

Cell Auth

Gateway

IP

TCP

DTLS

Initiator Intermediate

IP

UDP

DTLS

Circuit

IP

UDP

DTLS

Exit

Circuit

SOCKS

HTTP

Cell Auth

Circuit

Gateway

Tor

Host

Stream Stream

Server

IP

TCP

HTTP

UDP

uTCP uTCPuTCP

Figure 3: The main change in Reardon’s proposal is to have 1:1 circuit per TCP connection map-
ping, rather than Tor’s n:1, but TCP connections are still hop-by-hop in both schemes. To stop the
individual connections being apparent to a network observer, TCP frames are wrapped in DTLS
encryption. To allow this wrapping to be performed, a user-space TCP stack is employed, which
has the added advantage of reducing usage of kernel-level sockets (a scarce resource on some
platforms) and allowing greater customization of congestion control.

3 Alternative architecture proposals

This section discusses alternative architectures for Tor, involving the addition of a datagram hop-
by-hop transport.

3.1 Reardon

Reardon and Goldberg [RG09] propose replacing the TLS layer with DTLS (a datagram variant
of DTLS) and replacing TCP with UDP, as shown in Figure 3. DTLS still provides confidential-
ity and authenticity, however UDP does not provide reliability, in-order delivery, or congestion
control.

The authors therefore propose adding TCP back in, but with each pair of nodes having a sep-
arate hop-by-hop user-space TCP connection for each circuit, rather than one kernel-space TCP
connection for all circuits. For efficiency, the user-space TCP header is compressed by removing
redundant fields.

Since the user-space TCP provides reliable in-order delivery of Tor cells, there needs to be no
change to the cell encryption or authentication. A user-space TCP stack also allows more ver-
satile congestion management; for example dropping cells before they acknowledged when the
corresponding exit circuit is congested.

3.2 Viecco: UDP-OR

Viecco [Vie08], as shown in Figure 4 uses end-to-end TCP rather than the hop-by-hop approach
of Reardon, and uses the host TCP stack rather than a user-space one. Also, control traffic is not
sent within a TCP stream so is unreliable. If messages are lost the initiator must detect a timeout
and repeat the action. TCP is end-to-end, thereby allowing middle nodes to drop and re-order
packets, but leaving open the possibility of fingerprinting attacks.

4



REVISION 4AA56E0 (2011-11-07 20:07:41 +0000)

Application

IP

TCP

Cell Auth

Gateway

IP

Link Crypto

Initiator Intermediate

IP

UDP

Circuit

IP

Exit

Circuit

SOCKS

HTTP

Cell Auth

Circuit

Gateway

Tor

Host

Stream Stream

Server

IP

TCP

HTTPUDP

Link Crypto Link Crypto

UDP

TCP

SOCKS

Figure 4: In the architecture proposed by Viecco, the initiator TCP stack is responsible for split-
ting SOCKS payload data into TCP frames. Tor would then transport these frames directly (after
compressing and sanitizing some fields), for it to be reassembled by the host TCP stack on the exit
node, have any SOCKS header removed, and be emitted again via the host TCP stack. Interme-
diate nodes use UDP, with reliability and congestion control managed by the initiator and exit.
A custom link encryption/authentication scheme is used, but DTLS could equally take its place.
The Circuit and Cell Auth cryptography schemes are updated to handle dropped or re-ordered
cells.

Application

IP

TCP

Cell Auth

Gateway

IP

Link Crypto

Initiator Intermediate

IP

UDP

Circuit

IP

Exit

CircuitHTTP

Cell Auth

Circuit

Gateway

Tor

Host

Stream Stream

Server

IP

TCP

HTTP

UDP

Link Crypto Link Crypto

UDP

Figure 5: Like Viecco’s proposal, TCP is end-to-end, however in Freedom this is initiator to server,
rather than initiator to exit.

5



REVISION 4AA56E0 (2011-11-07 20:07:41 +0000)

Application

IP

UDP

Cell Auth

Gateway

IP

UDP

DTLS

Initiator Intermediate

IP

UDP

DTLS

Circuit

IP

UDP

DTLS

Exit

Circuit

SOCKS

VoIP

Cell Auth

Circuit

Gateway

Tor

Host

Stream Stream

Server

IP

UDP

VoIP

Figure 6: The Liberatore scheme is largely the same as Tor, except that data is received over
UDP SOCKS rather than TCP SOCKS, transported over DTLS/UDP rather than TLS/TCP, and
emitted as UDP rather than TCP. To handle the lack of in-order delivery, the Circuit cryptography
is changed to have an explicit rather than implicit sequence number, and Cell Auth authenticates
cells on the basis of the hash of a single cell rather than a running hash over all cells received in
the circuit so far.

3.3 Freedom 2.0

Full details on Freedom [BSG00] is not available but it appears that, while like Viecco’s proposal,
TCP is end-to-end, in Freedom the ends are the Initiator and destination Server, rather than Ini-
tiator and Exit. Like Viecco’s proposal, the initiator is responsible for reliability, through its host
TCP stack. However, SOCKS is not used (Freedom captures application data in the host network
stack), and control traffic is sent over TCP rather than UDP, and thus may assume reliable in-
order delivery. Freedom also performs protocol filtering, before the data stream is split into TCP
frames.

3.4 Cebolla and IPPriv

Other examples of the Freedom design are Cebolla [Bro02] and IPPriv [KBLC08]. Cebolla is
notable for having a restricted topology, however in terms of transport protocol it appears to be
similar to Freedom. IP packets are captured through a tun device on the initiator, encrypted, and
then sent as UDP packets. At the exit nodes, IP packets are emitted over the tun device. As such,
the characteristics of the initiator TCP stack are exposed to the destination.

Kiraly [KBLC08] proposes an anonymous communication system based on IPSec: IPPriv. It op-
erates in a similar way to Tor, with telescoping circuits and link encryption, but uses IPSec for
both. Unlike Tor circuit encryption, IPSec adds a header whether or not authentication is enabled.
Therefore cells must be padded to hide how many layers of encryption is needed, and there is a
limit on path length. Architecturally, IPPriv is similar to Freedom: IP packets are captured at the
initiator and emitted at the exit nodes.

3.5 Liberatore: 100-tor-spec-udp

Liberatore [Lib06] proposes a design (shown in Figure 6) for the transport of UDP over Tor, but
which does not offer in-order reliable delivery, so therefore cannot be used for TCP. It is intended
to work in parallel to the existing TCP variant of Tor, and all control traffic is sent over the existing
TLS/TCP connections between nodes; only UDP payload cells are sent over the DTLS/UDP
links.

6



REVISION 4AA56E0 (2011-11-07 20:07:41 +0000)

4 Transport protocols

The transport protocol is used, at a minimum for meeting the in-order reliable transport proper-
ties expected by applications to be provided by TCP.

4.1 Kernel-mode TCP

One option for a transport protocol is to use the kernel TCP stack as a transport protocol. When
TCP sessions are end to end, this introduces a serious anonymity vulnerability as the host oper-
ating system could be fingerprinted (if TCP sessions are hop by hop, as in Reardon’s proposal,
this would not be an issue). There are also other challenges of using the kernel-mode TCP stack.
Firstly, special operating system access would be needed to intercept packets from virtual net-
work interfaces. Secondly, Tor would be unable to have low level control over the TCP congestion
control algorithms.

4.2 User-mode TCP

Reardon uses the Daytona TCP stack, which has the difficulty of not being publicly available and
under a license incompatible with Tor’s There have been initial attempts to port the FreeBSD TCP
stack to user-space, but these are not yet mature. In any case, Tor will be the primary user of any
user-mode TCP stack for the foreseeable future, which could come with significant maintenance
costs.

4.3 User-mode SCTP

When reliability is initiator-to-exit, or hop-by-hop, there is no need to use TCP. An alternative
transport protocol is SCTP, which offers similar functionality to TCP, but with some extra features.
There have been proposals to port the FreeBSD SCTP stack to user-space, and this would be a
potential candidate for use in Tor, but the same arguments for user-mode TCP apply to SCTP.

4.4 µTP

µTP is a reliable in-order transport protocol using the LEDBAT (Low Extra Delay Background
Transport) congestion avoidance algorithm, so as the achieve the following goals:

• Use all available bandwidth on a link

• Add little latency

• Yield to TCP flows using the same bottleneck link

Its major advantage over other user-space alternatives is that it is implemented in libutp1, and
this implementation has seen wide usage. Therefore if Tor were to adopt this library, we would
not be entirely responsible for maintenance, and we have reasonable expectation that there would
not be blocking bugs. However, µTP is designed to yield to TCP, whereas Tor will likely aim to
be TCP-friendly but not necessarily yield to it. Also, µTP does not have an explicit method to
preserve fairness between flows sharing the same link – one of the main goals of a transport
protocol for Tor. Nevertheless, it may be possible to tweak the parameters of libutp to be more
suitable for Tor.

1https://github.com/bittorrent/libutp/

7

https://github.com/bittorrent/libutp/


REVISION 4AA56E0 (2011-11-07 20:07:41 +0000)

4.5 CurveCP

CurveCP is a transport protocol offering congestion management and reliable in-order delivery.
It also implements mandatory encryption and authentication. While both of these are required,
they are not suitable for use within datagram-Tor directly. Firstly, hop-by-hop encryption and
authentication may need to be performed without reliable in-order delivery. Secondly, the circuit
encryption must be done without increasing length but CurveCP increases message lengths to
accommodate the authentication tag.

Even so, it would be possible to use CurveCP as the transport protocol, and accept the inefficiency
of encrypting data which is already encrypted. End-to-end authentication is desirable, so this
feature would be of use although it would be inefficient to use the CurveCP handshake protocol
when the two ends already share a key.

Alternatively, CurveCP could be refactored to separate out the congestion control and reliable
in-order delivery and use this as an end-to-end transport protocol. Also, the encryption and
authentication could be used for hop-to-hop links, but with reliable in-order delivery disabled.

A user-mode implementation for CurveCP is available2, but does not include an explicit copy-
right statement. However related software from the author (Curve25519) was released into the
public domain, so it is likely that CurveCP will also be.

5 Design decisions to be made

5.1 Reliability and congestion control end-points and granularity

A variety of options are available for the end-points for reliability and congestion control proto-
cols. In Tor, TCP is used for both reliability and congestion control, on a hop-by-hop basis, with
link level granularity. In Reardon’s proposal, TCP is still hop-by-hop, but at circuit level granu-
larity. With Viecco’s proposal, TCP is initiator-to-exit, at stream level. Finally, Freedom, IPPriv,
and Cebolla all have TCP initiator-to-server.

An advantage of initiator-to-exit/server reliability is that intermediate nodes may drop cells
when load is high, and rely on congestion control to reduce the data rate. In contrast, with
hop-by-hop reliability, once a cell has been acknowledged, it may not be dropped. However,
circuit level cryptography is made easier and more efficient if it can assume reliability from the
underlying transport.

A risk of initiator-to-exit/server reliability is that the characteristics of the reliability protocol
are exposed to nodes other than those which the initiator directly connects to. This raises the
possibility of fingerprinting, especially if the initiator’s host networking stack is used.

Link level granularity should in principle have lower overhead, but has the disadvantage that
lost cells from one circuit will cause unnecessary delay on other circuits. Circuit level granularity,
as proposed by Reardon, removes this problem and thus decreases latency when there is packet
loss. Stream level granularity requires initiator-to-exit/server reliability as the stream level is
only exposed to the exit node and server, but in principle should reduce unnecessary delay even
more.

Of course it is not necessary for reliability and congestion control to be linked, but existing trans-
port protocols offer both. Tor currently uses TCP for link level congestion control, but uses a
custom algorithm for circuit and stream level. Unless stream level granularity is used for the
transport-protocol-provided congestion control, it is likely that some other congestion control
algorithm will be needed to preserve fairness between different streams on a circuit.

2See curvecp/ in http://hyperelliptic.org/nacl/nacl-20110221.tar.bz2

8

http://hyperelliptic.org/nacl/nacl-20110221.tar.bz2


REVISION 4AA56E0 (2011-11-07 20:07:41 +0000)

5.2 First-hop protocol

The primary reason to use a datagram transport is to reduce congestion within the core network.
Therefore, it is not essential to use datagram transport for the connection from initiator to first-
hop. Bridge users, who desire censorship-resistance may therefore wish to continuing using TLS
over TCP, rather than datagrams. This will be relatively simple to accommodate with hop-to-hop
reliability. However, with initiator to exit/server reliability, either there would need to be TCP
within TCP (and the consequential performance impact), or the bridge node would need to be
the TCP end point, rather than initiator.

It may however be desirable to use a datagram transport for the first-hop when used in conjunc-
tion with pluggable transports. This is because the pluggable transport would not need to pro-
vide reliability and so could run over UDP with little difficulty (e.g. disguising traffic as VoIP).
Even with TCP-based pluggable transports, switching to datagram transport for the first hop
could be useful. For example, while HTTP runs over TCP, it does not provide in-order reliable
transport when multiple connections would be used (as is the case for any realistic implementa-
tion).

5.3 Migration path

Clearly it is essential that there be a smooth transition between the existing TCP transport and
datagram transport. It is also necessary that the initial users of datagram transports are suffi-
ciently numerous so as not to be deanonymized. It would also be desirable to make maximum
usage of nodes which have been upgraded to support datagram transports.

Therefore, Tor would have to support both TCP and datagram transports until a sufficient pro-
portion of the network has upgraded. If TCP is still used for first-hop connections, Tor nodes
would have to support TCP for the foreseeable future.

With hop-by-hop reliability, it would be possible to use datagram transports for segments of a cir-
cuit where a pair of nodes support datagram transports. In contrast, with initiator-to-exit/server
reliability, all hops for a circuit would need to support datagram transports for a circuit to use
datagram transports. This means that more circuits would able to, at least partially, use datagram
transports for hop-by-hop reliability.

So as to preserve the anonymity set of datagram transport users, clients should not use datagram
transports until a sufficient number of other clients support them. This could be achieved by hav-
ing a flag in the consensus which states whether datagram transports should be used. This flag
would only be set once enough of the network supports datagram transports, on the assumption
that clients upgrade roughly as frequently as nodes.

The need for collective action is less severe for hop-by-hop reliability because the datagram trans-
port is only visible on a hop-by-hop basis. However, it should be assumed that whether a circuit
is using hop-by-hop reliability will be visible to other hops on the circuit based on traffic charac-
teristics. For initiator-to-exit/server reliability whether the initiator supports datagram transport
will be clearly visible to all hops on the circuit.

5.4 Transport protocol

A transport protocol will need to be selected, such as µTP, CurveCP, TCP or SCTP (user-mode or
kernel-mode).

9



REVISION 4AA56E0 (2011-11-07 20:07:41 +0000)

5.5 Hop-to-hop encryption and authenticity

For all schemes considered, hop-by-hop encryption is required to hide which packet belongs to
which circuit; authenticity is also highly desirable. Currently Tor uses TLS, but this requires a
reliable link layer, which is likely to be eliminated to reduce unnecessary delay in conditions of
packet loss. The “natural” choice would be to use DTLS, as adopted by Reardon, but a custom
protocol, such as that adopted by Viecco, is another possibility. CurveCP includes a suitable link
layer encryption, but the implementation tightly couples the encryption/authentication layer
with the reliability and congestion control.

5.6 Socket usage

One current limiting factor for Tor nodes running on Windows is limitations on number of sock-
ets. All the proposed datagram schemes with user-space reliability protocols reduce socket usage
on intermediate nodes, which may be beneficial if the IOCP functionality in libevent does not
completely solve this issue. However high socket usage is potentially still an issue on exit nodes,
except for those proposals which use initiator-to-server reliability.

5.7 Circuit encryption and cell authentication

Tor’s current circuit encryption scheme is AES CTR mode without explicit IVs. This approach
depends on a reliable in-order transport so where reliability is above circuit encryption in the
protocol stack (as it is with initiator-to-exit/server reliability), a different approach would be
needed. The most obvious way of extending circuit encryption would be to include an IV in every
cell, which would increase the protocol overhead but allow cells to be dropped or re-ordered
without affecting the decryption of others. For hop-by-hop reliability, circuit encryption is above
reliability and so no change is needed.

Tor’s current cell authentication scheme is to include a running digest over all cells sent on this
circuit. The digest is only 32 bits, on the basis that a circuit is destroyed if the digest doesn’t
match and therefore in the event that a cell is not detected as corrupted immediately, it is very
likely that the following cell will be rejected and the circuit destroyed.

Calculating a running digest is possible with hop-by-hop reliability so there need be no change
to cell authentication for this approach. However with Liberatore’s and Viecco’s approach, cell
authentication is performed at a lower layer in the protocol stack than any reliability protocol
and so a running digest is no longer suitable. Therefore a cell digest could be used, but to give
similar security guarantees, the digest length would need to be extended.

Tor does not guarantee authenticity of cells, mainly because this would require a non-length-
preserving cell encryption and thus limit path lengths and require padding to hide how many
layers of encryption are in place. The path length limit is no longer an issue because there are
other methods in place for Tor to limit path length, however padding may still be undesirable
for efficiency reasons. Tor’s lack of cell authenticity permits tagging attacks, but this is explicitly
permitted by the Tor threat model. If this is considered a problem, an approach like Kiraly’s,
which includes hop-by-hop cell authentication, could be adopted.

5.8 Carrying UDP traffic

The primary motivation for Tor datagram transports is to improve the performance of TCP over
Tor. However, it may also be desirable to allow UDP to be sent over Tor, for example VoIP traffic.
All the schemes which use initiator-to-server reliability will naturally support UDP, as Tor would

10



REVISION 4AA56E0 (2011-11-07 20:07:41 +0000)

not need to even know the protocol type of packets. Liberatore’s proposal is explicitly designed
to support UDP, although UDP packets will not be indistinguishable from TCP packets because
they are inside different link-layer encapsulations. Viecco’s proposal could be easily extended to
transport UDP, if the SOCKS server on the exit node were extended to support UDP. Reardon’s
proposal is more challenging to support UDP because reliability is ensured at the circuit layer
and so any dropped cells will be re-transmitted, which will defeat the purpose of the application
using UDP in the first place. Circuits could be marked as not needing reliability, but a different
circuit encryption and cell authentication scheme would need to be used for these; also such
circuits would be distinguishable from TCP circuits by intermediate nodes.

5.9 Carrying ACK messages

ACK messages needed for reliability and congestion control may need to be treated specially
because they are much shorter than data packets. It would be possible to pad them to the same
size as data packets, but this may be inefficient. With hop-by-hop reliability, ACK packets would
be encrypted using DTLS which only adds a small amount of padding, so an external adversary
would likely be able to tell which packets are ACK messages and thus learn something about the
circuits being carried. With initiator-to-server/exit reliability the situation is more problematic as
now information on traffic characteristics would be more visible to middle nodes.

Unreliable control messages Viecco proposes that control messages should not be carried in a
reliable transport. A transport session is set up only between Initiator and Exit and only used for
carrying data. This is best option in terms of minimizing state on intermediate Tor nodes, and
is the closest to the standard Internet router model. It also reduces the overhead of setting up
transport streams for carrying control messages. However it is complex from a protocol-design
perspective as all participants must assume that any control message may be dropped at any
point and arbitrarily re-ordered. In principle control messages may be corrupted too, but the
hop-by-hop integrity protocol should prevent this from happening.

6 Recommendations and future study

This section proposes a set of provisional recommendations and raises questions which should
be answered in further analysis.

6.1 Architecture

The most fundamental question to be resolved is the overall architecture: hop-by-hop reliability
(e.g. Reardon), initiator-to-exit reliability (e.g. Viecco) or initiator-to-server reliability (e.g. Free-
dom). There are arguments for each approach, but in the absence of conclusive performance
results, one approach is to guide the architecture by engineering and deployment difficulties.
Initiator-to-server reliability would require low-level access on exit nodes, so as to generate raw
packets, which could put pressure on the already scarce resource of exit bandwidth. Initiator-to-
exit has the problem that the cryptographic protocols would need to be modified to handle the
lack of reliable in-order delivery of cells. In comparison, this makes hop-by-hop reliability (e.g.
Reardon) the most promising approach.

11



REVISION 4AA56E0 (2011-11-07 20:07:41 +0000)

6.2 Transport protocol

No single candidate for transport protocol is the obvious choice. The anonymity and engineer-
ing difficulties with using the kernel-mode TCP stack suggest that this approach is not suitable,
except perhaps for experimentation. User-mode TCP or SCTP stacks are possible, but are not yet
available in a usable form. µTP and CurveCP are readily available, but µTP would be the easiest
to integrate and so is a good choice for testing. Further study is needed as to whether investing
engineering time in user-mode TCP or SCTP is a good choice, compared to analyzing and tuning
µTP so that it has the properties required.

6.3 Other trade offs

A consequence of adoption hop-by-hop reliability is that Tor would remain able only to carry
TCP traffic. This may be the prudent engineering choice, so as to avoid having to change many
aspects of Tor at the same time. Nevertheless, if VoIP and similar protocols are strongly desirable,
it may be worth revisiting this decision.

References

[Bro02] Zach Brown. Cebolla – pragmatic ip anonymity. Technical report, June 2002. http:
//www.cypherspace.org/cebolla/cebolla.pdf.

[BSG00] Philippe Boucher, Adam Shostack, and Ian Goldberg. Freedom systems 2.0 architec-
ture. White paper, Zero Knowledge Systems, Inc., December 2000.

[KBLC08] C. Kiraly, G. Bianchi, and R. Lo Cigno. Solving performance issues in anonymiza-
tion overlays with a L3 approach. Technical Report DISI-08-041, University
of Trento, September 2008. http://disi.unitn.it/locigno/preprints/
TR-DISI-08-041.pdf.

[Lib06] Marc Liberatore. Tor unreliable datagram extension proposal. Proposal 100, The
Tor Project, February 2006. https://gitweb.torproject.org/torspec.git/
blob/HEAD:/proposals/100-tor-spec-udp.txt.

[Rea08] Joel Reardon. Improving Tor using a TCP-over-DTLS tunnel. Master’s thesis, Univer-
sity of Waterloo, September 2008. http://hdl.handle.net/10012/4011.

[RG09] Joel Reardon and Ian Goldberg. Improving Tor using a TCP-over-DTLS tunnel. In
Proceedings of the 18th USENIX Security Symposium, August 2009.

[Vie08] Camilo Viecco. UDP-OR: A fair onion transport design. In HotPETS, 2008. http:
//www.petsymposium.org/2008/hotpets/udp-tor.pdf.

12

http://www.cypherspace.org/cebolla/cebolla.pdf
http://www.cypherspace.org/cebolla/cebolla.pdf
http://disi.unitn.it/locigno/preprints/TR-DISI-08-041.pdf
http://disi.unitn.it/locigno/preprints/TR-DISI-08-041.pdf
https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/100-tor-spec-udp.txt
https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/100-tor-spec-udp.txt
http://hdl.handle.net/10012/4011
http://www.petsymposium.org/2008/hotpets/udp-tor.pdf
http://www.petsymposium.org/2008/hotpets/udp-tor.pdf

	Background
	Tor's current architecture
	Tor circuit extension
	The circuit extension process

	Data transport
	The data transport process


	Alternative architecture proposals
	Reardon
	Viecco: UDP-OR
	Freedom 2.0
	Cebolla and IPPriv
	Liberatore: 100-tor-spec-udp

	Transport protocols
	Kernel-mode TCP
	User-mode TCP
	User-mode SCTP
	TP
	CurveCP

	Design decisions to be made
	Reliability and congestion control end-points and granularity
	First-hop protocol
	Migration path
	Transport protocol
	Hop-to-hop encryption and authenticity
	Socket usage
	Circuit encryption and cell authentication
	Carrying UDP traffic
	Carrying ACK messages

	Recommendations and future study
	Architecture
	Transport protocol
	Other trade offs


