
Taken Out of Context: Security Risks with Security Code AutoFill in iOS & macOS

Andreas Gutmann
OneSpan Cambridge Innovation Centre &

University College London
andreas.gutmann@onespan.com

Steven J. Murdoch
OneSpan Cambridge Innovation Centre &

University College London
s.murdoch@ucl.ac.uk

Abstract
Security Code AutoFill is a new convenience feature inte-
grated into iOS 12 and macOS 10.14, which aims to ease the
use of security codes sent via SMS. We report on the first
security evaluation of this feature, inspecting its interaction
with different types of service and security technologies that
send security codes via SMS for authentication and authori-
sation purposes. We found security risks resulting from the
feature hiding salient context information about the SMS mes-
sage while still relying on users to make security-cautious
decisions. Our findings show that adversaries could exploit
this decontextualisation. We describe three attack scenarios in
which an adversary could leverage this feature to gain unau-
thorised access to users’ online accounts, impersonating them
through their instant messengers, and defraud them during
online card payments. We discuss the results and suggest
possible measures for affected online services to reduce the
attack surface by altering the phrasing of their SMS or us-
ing alphanumeric security codes. In addition, we explore the
design space of Security Code AutoFill and sketch two alter-
native prototype designs which aim at retaining the improved
convenience while empowering users and online services to
safeguard their interactions.

1 Introduction

In June 2018, Apple announced at its Apple Worldwide De-
velopers Conference (WWDC) the introduction of a new con-
venience feature to their operating systems (OS). This new
feature, called Security Code AutoFill, scans incoming SMS

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.
Who Are You?! Adventures in Authentication (WAY) 2019.
August 11, 2019, Santa Clara, CA, USA.

messages for relevant numeric codes and suggests them to the
user for autofill directly on-screen. This improves user expe-
rience and convenience as the user is no longer required to
open the messaging application, memorise the security code,
and re-enter it on another app or website.

Security codes are sent via SMS for a variety of authenti-
cation and authorisation purposes. Each requires the user’s
mobile phone number to be registered with the corresponding
service, while the legitimate user is expected to receive and
quote security codes to proceed with certain actions – some-
thing an impersonator should be unable to do. A malicious
exploit of the Security Code AutoFill feature could expose
these services and their users to increased risks.

We analysed the interaction between the Security Code
AutoFill feature and security procedures of online services
that rely on the transmission of security codes via SMS for
authentication and authorisation. Our Cognitive Walkthrough
analysis found security risks stemming from a design aspect
of Security Code AutoFill: reducing the information provided
to users while relying on them to make cautious decisions
about security. We then explored the design space for this fea-
ture and found that alternative designs, which would alleviate
our concerns, could be feasible.

2 Background

In this section, we describe the different purposes of security
codes sent via SMS and how Security Code AutoFill works.

2.1 SMS-based security codes

One Time Password (OTP) Many systems rely on OTPs
for increased security during user authentication. Such secu-
rity messages are typically sent via SMS to the user’s device
when registering a login attempt for the corresponding ac-
count. To complete the login, the legitimate user is expected
to retrieve this code from their device and quote it – something
an impersonator would be unable to do.

1



One Time Authorisation (OTA) Another use for security
messages via SMS is delivery of OTA for registration or acti-
vation of software installations during setup, e.g. for mobile
phone apps. Activation codes can ease such processes and
create a permanent link between an installation and a phone
number, which can double-function as a unique user ID for
services such as instant messengers.

Transaction Authorisation Number (TAN) Transaction
Authorisation is commonly used for online transactions to val-
idate that instructions received by a payment provider match
with the intentions of the legitimate user of the affected ac-
count. It is an essential requirement to defend against sophis-
ticated adversaries [2]. One of the most common methods
is to summarise the salient information of a transaction re-
quest, augment it with a TAN cryptographically linked to
this transaction, and send both via SMS to the device of the
corresponding account owner. The user is expected to verify
the transaction summary and, if it matches their intention,
authorise the transaction by quoting the TAN.

2.2 Security Code AutoFill
Security Code AutoFill works by scanning incoming SMS for
numeric codes and keywords, e.g. ‘code’ or ‘codeword’. It
also monitors the Safari browser and active apps for places to
fill-in security codes. If a suitable SMS and input field were
found, the feature extracts the security code from the SMS
and suggests it for autofill (see fig. 1a). If the SMS contains an
amount of money, e.g. ‘£100’, this information is displayed in
brackets (see fig. 1b). The user needs to tap on this suggestion
to autofill the code. This feature operates on iOS and macOS,
but requires SMS synchronisation to be activated for the latter.

(a) iOS AutoFill suggestion for a
security code.

(b) iOS AutoFill suggestion for a
security code from an SMS that
also contained the text “£100”.

Figure 1: Screenshots: Security Code AutoFill on iOS 12
suggesting autofill of security codes.

2.3 Design of security messages
The design of messages with which security protocols should
communicate critical information was first discussed by Abadi
and Needham [1], who proposed the principle of ‘Explicit

Communication’: “Every message should say what it means:
the interpretation of the message should depend only on its
content.” Laughery and Wogalter [5] were concerned with
the more broad topic of designing general warning messages
and recommended to be concise but clearly convey the mes-
sage, using concrete rather than abstract wording, and avoid
unfamiliar abbreviations or ambiguous statements. Short sen-
tences with short, familiar words should be used preferentially.
Messages should be explicit in what the reader should do or
not do.

3 Threat model

We investigated whether the introduction of Security Code
AutoFill has affected pre-existing threats against the affected
services, i.e. whether it ameliorates or aggravates protection
against known attacks. The adversary considered in our secu-
rity analysis is located remotely, e.g. without physical access
to the online service, user, or their equipment. It is restricted
to the usage of publicly known attacks, e.g. no zero-day vul-
nerabilities. Its active social engineering is limited to sending
phishing emails to the user, e.g. no cold calling. iPhones are
not jailbroken, e.g. apps or malware could not access and read
SMS. We assume that telecommunication providers and their
networks are secure, e.g. no SIM swap scams.

4 Methodology

We analysed the interaction of Security Code AutoFill in iOS
12 and macOS 10.14 with security codes delivered by SMS,
utilising the Cognitive Walkthrough (CW) method described
by Gutmann and Warner [3] for an exploratory data collection
to gain insights into how users may perceive the new user
interface (UI) and functionality, and the impact this could
have on security during interactions with affected services.

This method was selected for its strength at focused eval-
uations of selected features of a system, while removing the
need for partial disclosure about the security focus of our
research to avoid participant priming. We began the security
evaluation during Apple’s beta of iOS 12.1 This required us
to be flexible and adapt when a new beta version changed
the Security Code AutoFill feature. The choice of an expert
evaluation methodology, without direct involvement of non-
expert users, minimises the effort for expected repetitions of
previously completed tests due to the release of a new beta
version. To avoid priming of participants during a user study,
we might have been required to deceive them about the ac-
tual purpose of the study. Principle 8.07 of the ‘APA Ethical
Principles of Psychologists and Code of Conduct’ [6] about
the use of deception in research requires that any effective

1Given the expected distribution of new iOS versions to millions of
consumer device, we considered a timely security evaluation, prior to the
features full release, the ethical choice.

2



non-deceptive alternative procedures have been excluded as
not feasible prior to the use of any deceptive techniques. We
concluded that, under consideration of the specific context of
this security evaluation, a CW would be a feasible alternative.

The first author conducted the CW and evidenced all find-
ings with screenshots and handwritten notes, which were con-
sequently rewritten into detailed descriptions. These findings
were then discussed with and verified by the second author.

4.1 Preparations

We defined the main context, i.e. target of the evaluation, as
the iOS 12 and macOS 10.14 UI. The user’s main goal during
each CW is to complete the task which eventually causes the
service to send a security code via SMS, e.g. to login to their
remote account. The user’s secondary goal is security, e.g.
not allowing an adversary to login to their remote account.
Their necessary sequence of actions is as follows: (1) proceed
with the activity which eventually causes the server to send
a security code to their mobile phone, (2) locate the correct
input field for the security code, (3) retrieve the security code,
(4) conduct security checks as necessary and abort if one or
more checks fail, and (5) insert and submit the security code
in the previously located input field. Finally, we installed and
updated iOS 12 and macOS 10.14 on our devices, prepared a
second mobile phone to simulate the adversary, and inserted
new SIM cards into the mobile phones.

Each CW consisted of a step-by-step analyses of how the UI
could guide its user when attempting to execute the necessary
sequence of actions for a corresponding task, and how the
adversary could try to incorporate this into an attack. At each
step of this process, we assessed: (1) Which visual cues are
available to the user for the next action and what feedback is
provided to them after each action? (2) What actions could an
adversary take to get closer to their goal and how could the
user foil such an attack at this step?

4.2 Limitations

The CW method does not involve (non-expert) users and the
results are solely based on skills and expertise of evaluators. It
commonly identifies only a subset of issues for the evaluated
system, for which the frequency cannot be estimated. Yet, this
does not reduce the validity of the identified issues.

5 Results

In this section, we report on the results from our CW. For
each type of security code, we present one scenario, in which
the adversary’s attack could succeed, as being representative
for multiple findings that lead to similar outcomes for both
OS. Although we maintained a detailed record of step-by-
step actions during each CW, we limit our reporting to salient

information about those actions by the user and the adversary
which record relevant information to describe the scenario.

5.1 Remote login with OTP
In the scenario described here, an adversary wants to login
to an online account of the user, which is secured with 2FA.
As a login portal, we chose the PayPal website2. The scenario
refers to the iOS 12 UI and assumes that the attacker knows
the victim’s email address and PayPal password (the user’s
email address equals their user name for this service).

The scenario begins with the adversary sending a phishing
email for an unrelated, ‘low-risk’ website to the user. Her-
ley [4] argues that users are less likely to detect phishing
emails of ‘low-risk’ websites due to changes in the expected
cost-benefit ratio. This could also allow more targeted spear
phishing. When the user clicks on a link in this email, and vis-
its the phishing website, the adversary is notified by a scripted
event on the website. The adversary then attempts to log in
to the user’s PayPal account, which requires an OTP for user
authentication and suggests to send it to the user’s registered
phone number – which is confirmed by the adversary. This
SMS also summarises the source and purpose of the code.

The user receives the SMS from PayPal on their phone.
The phishing website triggers activation of the Security Code
AutoFill feature, which suggests filling the 2FA code into it.
If the user follows the suggestion and submits the form, the
website sends the security code to the adversary, which can
use this to login to the user’s account. Without Security Code
AutoFill the user would be required to access and read the
SMS, which would enable them to notice that the SMS was
sent by a different sender than the website they’re browsing,
and thus avoid the attack (see fig. 2).

5.2 App registration with OTA
This scenario describes an opportunistic trawling attack aimed
at hijacking the accounts of users of an app registered to their
phone number. We chose the WhatsApp Messenger app for
iOS as an example for our scenario.2The scenario refers to
the iOS 12 UI and assumes that the adversary is capable of a
Man-in-the-Middle (MitM) attack on a public WiFi.

The scenario begins with the adversary executing a MitM
on a public WiFi, scanning websites for social login buttons
(e.g. Facebook, Gmail, etc.) and injecting a fake WhatsApp
login button. The user accesses the attacked WiFi, browses
the Internet, and eventually loads a website with social login
buttons. They decide to try the “new” WhatsApp login button,
unaware of its adversarial nature. The website requests the
user to enter their phone number for apparent identification,
which they submit and is then transmitted to the adversary.

2Our results do not indicate any security weaknesses directly associated
with this service. It was chosen for illustrative reasons and a different choice
would have been possible.

3



Figure 2: Screenshot: Security Code AutoFill suggested to fill
a security code into an unrelated website. The SMS exposes
a discrepancy between the SMS content and website.

The adversary installs the WhatsApp Messenger app on their
phone and submits the user’s mobile phone number during
registration. WhatsApp sends an OTA to the phone number
which summarises the source and purpose of the code.

The user receives the SMS on their phone. The fake What-
sApp login button triggers activation of Security Code Aut-
oFill, which suggests filling the OTA into this website. If the
user follows this suggestion and submits the form, the website
sends the OTA to the adversary. The adversary can use this
code to register the app on their phone to the user’s phone
number, hijacking the victim’s WhatsApp account. Without
Security Code AutoFill the user would be required to access
and read the SMS, which would enable them to notice that
the SMS was sent for a different purpose than that described
by the website, and thus avoid the attack (see fig. 3).

5.3 Online payment with Transaction Autho-
risation

The scenario described here is based on an adversary who
wants to trick a user into paying for its purchase. We chose
the implementation of 3D Secure with Transaction Authorisa-
tion by Monzo Bank Ltd, and the online shops operated by
‘Voucher Express’ and ‘Greater Anglia’, as examples for our
scenario.3 The scenario refers to the macOS UI and assumes
that the adversary was able to infect the user’s device with
malware capable of a Man-in-the-Browser (MitB) attack – a
common threat assumption for this security technology [2].

The user wants to make a credit card payment of £21.75 at
the online shop of merchant Voucher Express. The adversary
wants to acquire a train ticket worth £17.30 from merchant

3Our results do not indicate any security weaknesses directly associated
with these services. They were chosen for illustrative reasons and different
choices would have been possible.

Figure 3: Screenshot: Security Code AutoFill suggested to fill
a security code into an unrelated website. The SMS exposes
a discrepancy between the SMS content and website.

Greater Anglia. The user selects to proceed to the payment
website of Voucher Express, but is redirected to a payment
website for the train ticket by the malware on his device
instead. The malware also tampers with the user’s browser
view to imitate the intended purchase, including an apparent
discount to justify the difference in payment value. The user
enters their credit card details on this website and requests
a security code via SMS. This SMS also summarises the
transaction data received by the bank.

The user receives the SMS on their phone. Security Code
AutoFill gets triggered and suggests filling the security code
into the manipulated website. If the user follows this sugges-
tion and submits the security code, they confirm the purchase
of the train ticket for the adversary. Without Security Code
AutoFill the user would be required to access and read the
SMS, which would enable them to notice that the SMS was
sent for a purchase at a different vendor, and thus avoid the
attack (see fig. 4).

6 Discussion

Our security analysis found elevated security risks from the
decontextualisation of security codes by Security Code Aut-
oFill. The attacks we described would be unlikely to succeed
if the user were to read the context information in those SMS.
We know for more than twenty years that context is critical for
security messages [1]. Security codes should not be presented
to users without context, but Security Code AutoFill makes
any user interaction with such messages optional. We also
know that the required contextual information relayed to users
in security codes differs based on the type of authentication
and authorisation process (see section 2.1), which is why they
should not be treated the same way by automated systems that
cannot reliably distinguish between them. Services sending

4



Figure 4: Screenshot: Security Code AutoFill suggested to
fill a security code for the wrong purchase into the payment
website. The SMS exposes a discrepancy between the SMS
content and website / the user’s intentions.

security codes should be able to determine whether and how
auxiliary software interacts in these processes.

Apple made a unilateral decision to introduce a feature
which affects services that rely on SMS to deliver security
codes. This might encourage more users to activate corre-
sponding security options for their accounts, but affected ser-
vices have limited options to influence the feature and how it
elevates certain security risks for them and their users. Secu-
rity Code AutoFill detects numeric security codes based on
proximity to words such as “code” or “passcode” and cannot
be deactivated4. Services could avoid having security codes
being recognised by omitting such keywords or when using
alphanumeric security codes. But this could be detrimental
to user experience and the effectiveness would be subject to
future design changes, e.g. introduction of new keywords.
Modifications to the website or app code alone would only be
a partial solution to prevent the feature from activating, since
an adversary capable of content manipulation could reactivate
it.

SMS was not designed with support for security protocols
in mind and its use therein has been criticised before. Some
of the main risks come from the lack of endpoint authentica-
tion and cryptographic binding. Solutions that support these
mechanisms, e.g. through asymmetric cryptography, have an
advantage. Our findings show a further advantage for authen-
tication and authorisation solutions that retain control over
interactions with third-party software on the user’s side of
these processes, e.g. security keys based on FIDO standards.

Services that rely on SMS trade ease of deployment for
control over the communication channel. Securing such inter-
actions between independent systems can be a complex and

4Text Message Forwarding can be deactivated to disable SMS sharing
between devices linked to the same Apple ID. Preventing macOS from
receiving SMS effectively disables Security Code AutoFill on macOS.

difficult task. Services that wish to utilise benefits from inter-
actions with systems they do not control, while minimising
security risks from these interactions, could do so by bor-
rowing techniques from the field of cryptographic proofs: a
reductio ad absurdum, i.e. proof by contradiction, to demon-
strate the security of a system. If the existence of a security
failure would necessarily require the violation of something
assumed to be true, then it implies that no security failure is
possible or the assumption is false. One such assumption for
systems relying on security codes must be that users can un-
derstand the context of each security code before they decide
whether to disclose it to an application.

7 Exploring the feature’s design space

In this section, we describe two opportunities in the design
space of Security Code AutoFill to alleviate the risks de-
scribed in this paper. We present design sketches and briefly
compare their expected functionality with the current imple-
mentation of Security Code AutoFill and to a similar function-
ality in Android. Further work would be required to imple-
ment and evaluate actual, functional designs of these sketches,
e.g. following a co-design or thinking-aloud methodology.

We identified two main challenges in the design space
of Security Code AutoFill: (1) Salient context data shall be
extracted from the SMS, yet it shall remain legible for users
without the feature, (2) character and space constraints on the
length of SMS and from the device’s screen, respectively.

The first opportunity aims at displaying more context in-
formation from SMS that deliver security codes. The words
“From Messages” in current autofill suggestions could be re-
placed with information about the sender of the SMS, e.g.
phone number or contact name. Unused space to the sides of
each autofill suggestion could display further context infor-
mation, if available. To identify such information, additional
keywords and design patterns could be specified, e.g. words
“sent by” or “purchase at” followed by the desired display
name. Similar patterns could apply to other context infor-
mation such as transaction value and purpose of the code.
Figure 5a is a design sketch of such an autofill suggestion.
The second opportunity would be to allow SMS senders to
identify the targeted destination for a security code, e.g. URL
or app name, with specified keywords. The feature would then
only suggest codes for autofill into the designated destination
(if provided). Figure 5b is a design sketch of such an SMS.

Comparison. Security Code AutoFill was described earlier
in section 2.2. Android, on the other side, supports a method
for cryptographic binding to specify in the SMS the intended
recipient of a security code. Apps can be identified through
their cryptographic hash, sent to the remote server when the
app requests a security code. The server embeds this hash
alongside a security code in an SMS sent to the user’s device.

5



(a) Design sketch of alternative
autofill suggestion for an online
payment. Sketch of correspond-
ing SMS shown in fig. 5b.

(b) Design sketch of security
code sent via SMS with ad-
ditional keywords indentifying
salient context information.

When the SMS is received by the user’s device, Android
identifies the intended app through its cryptographic hash and
makes the message text available to this app through the SMS
Retriever API. Finally, the app needs to call the SMS Retriever
API, receive the message text, and parse the security code from
it. This provides end-to-end security but only for apps on the
receiving mobile device. Security codes intended for websites
or apps on other devices, as well as those containing a TAN,
need to be processed by the user.

The opportunities for Security Code AutoFill we described
could empower users to validate context information of all
security codes while retaining the autofill functionality, but
would face limitations with respect to the maximum length of
SMS. In comparison with Android, our proposal supports all
types of security codes intended for any connected device but
doesn’t fully automate the interaction.

8 Ethical consideration

Security professionals have an ethical obligation to ensure
their knowledge is shared in a responsible manner, especially
when disclosing risks for systems that have been deployed. In
line with our responsible disclosure procedure, we disclosed
our concerns during the beta of iOS 12 and informed Apple.
An update added transaction values to autofill suggestions
(see fig. 1b), which addressed some of our concerns. The
issues we report here have not been alleviated. This procedure
is compliant with the requirements of our institutions.

9 Conclusion

We analysed Security Code AutoFill in iOS 12 and macOS
10.14 and found security risks stemming from the decontex-

tualisation of security codes, removing salient context infor-
mation while requiring user’s to continue making security-
cautious decisions. Our findings show an advantage for secu-
rity messages delivered directly to users, not only their devices.
We described two opportunities in the feature’s design space
to retain the improved convenience while empowering users
and online services to safeguard their interactions, and briefly
compared them to the Android platform.

Acknowledgments

This research has received funding from the European Union’s
Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement No 675730.

References

[1] Martin Abadi and Roger Needham. Prudent engineering
practice for cryptographic protocols. IEEE transactions
on Software Engineering, (1):6–15, 1996.

[2] Manal Adham, Amir Azodi, Yvo Desmedt, and Ioannis
Karaolis. How to attack two-factor authentication inter-
net banking. In International Conference on Financial
Cryptography and Data Security. Springer, 2013.

[3] Andreas Gutmann and Mark Warner. Fight to be for-
gotten: Exploring the efficacy of data erasure in popular
operating systems. In Privacy Technologies and Policy,
pages 45–58, Cham, 2019. Springer International Pub-
lishing.

[4] Cormac Herley. So long, and no thanks for the external-
ities: the rational rejection of security advice by users.
In Proceedings of the 2009 workshop on New security
paradigms workshop, pages 133–144. ACM, 2009.

[5] KR Laughery and MS Wogalter. Warnings and risk per-
ception. Handbook of Human Factors and Ergonomics, G.
Salvendy (ed.), New York, NY: Wiley-Interscience, 1997.

[6] American Psychological Association Ethics Committee
Washington DC US. APA Ethical Principles of Psychol-
ogists and Code of Conduct. American Psychologist,

47:1597–1611, 12 1992.

6


	Introduction
	Background
	SMS-based security codes
	Security Code AutoFill
	Design of security messages

	Threat model
	Methodology
	Preparations
	Limitations

	Results
	Remote login with OTP
	App registration with OTA
	Online payment with Transaction Authorisation

	Discussion
	Exploring the feature's design space
	Ethical consideration
	Conclusion
	Acknowledgments

