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ABSTRACT
We present a generic and automated approach to re-identifying
nodes in anonymized social networks which enables novel
anonymization techniques to be quickly evaluated. It uses machine
learning (decision forests) to matching pairs of nodes in disparate
anonymized sub-graphs. The technique uncovers artefacts and in-
variants of any black-box anonymization scheme from a small set
of examples. Despite a high degree of automation, classification
succeeds with significant true positive rates even when small false
positive rates are sought. Our evaluation uses publicly available real
world datasets to study the performance of our approach against real-
world anonymization strategies, namely the schemes used to protect
datasets of The Data for Development (D4D) Challenge. We show
that the technique is effective even when only small numbers of
samples are used for training. Further, since it detects weaknesses
in the black-box anonymization scheme it can re-identify nodes in
one social network when trained on another.

Categories and Subject Descriptors
K.4.1 [Computers and Society]: Public Policy Issues—Privacy;
C.2.0 [Computer-communications networks]: General—Secu-
rity and protection

Keywords
Privacy; de-anonymization; social networks; machine learning

1. INTRODUCTION
A number of rich datasets have recently been published for re-

search purposes, often with only casual attempts to anonymize them.
Research in de-anonymization has also seen an upswing [1, 13, 14,
19], leading to high profile data releases being followed by high
profile privacy breaches.

These developments have forced organizations to make some
effort to anonymize the released data. However, overly distorting
data to achieve this contradicts the very purpose of a release, since
it negatively impacts utility.
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Social network graphs in particular are high dimensional and
feature rich data sets, and it is extremely hard to preserve their
anonymity. Thus, any anonymization scheme has to be evaluated
in detail, including those with a sound theoretical basis [11]. Tech-
niques have been proposed to resist de-anonymization [8, 17, 22],
however, Dwork and Naor have shown [7] that preserving privacy of
an individual whose data is released cannot be achieved in general.
Ad-hoc vs generic. It has been conclusively demonstrated that
merely removing identifiers in social network datasets is not suf-
ficient to guarantee privacy. Despite these results, data practitioners,
continue to propose anonymization strategies in the hope that they
can resist de-anonymization “in practice”, such as the ones used to
protect datasets from The Data for Development (D4D) challenge.
This has lead to a cat-and-mouse game: Research thus far has fo-
cused on defeating new variants of anonymization techniques by
manually devising ad-hoc de-anonymization techniques. Despite
their simplicity, unraveling each anonymization technique manually
requires considerable effort and time and each attack can be de-
feated by a small tweak to the anonymization strategy, often by de-
stroying specific features on which the attack has been constructed.
Tailoring attacks to specific scenarios [15] highlights the problem
of anonymization but the expense involved in evaluating each new
scheme cannot be amortized.

Better solutions are needed which attack entire classes of
anonymization schemes rather than taking a piecewise approach.
Such generic de-anonymization techniques will allow cheap and
timely evaluation of novel anonymization schemes. In this pa-
per, we demonstrate the efficacy of automated de-anonymization
attacks on real-world anonymization schemes. They automatically
uncover artefacts remaining after anonymization that allow for re-
identification of nodes in social networks. The automated attacks
can be used quickly and cheaply to demonstrate that a non negligi-
ble number of users would be at risk of de-anonymization for “novel”
anonymization schemes. Specifically, we:

• Formulate the problem of de-anonymization in social net-
works as a learning task. From a set of examples of known
correspondences between nodes (training data) we wish to
learn a good de-anonymization model (Section 3.1).
• Describe a non-parametric learning algorithm tailored to the

de-anonymization learning problem in social graphs. The
algorithm is based on random decision forests, with custom
features that match social network nodes (Sections 3.2-3.4).
• Evaluate the learning algorithm on a real-world de-

anonymization task from the D4D challenge (Sec-
tions 4.1,4.2), and compare it with an ad-hoc approach
(Section 4.4).
• Show that the algorithm and model learn sufficient informa-

tion about the anonymization algorithm, rather than the spe-



cific dataset anonymized, to be useful when de-anonymizing
social networks of a different nature than the ones used for
training (Section 4.3).
• We apply the automated learning algorithm, to a standard

problem [16] of de-anonymizing nodes across social net-
works. It performs well, even when a very small number
of examples are used to train it (Sections 4.4,4.5).

Note on research ethics. The experiments reported in this paper
are performed on previously published social networks specifically
shared for research by the Stanford Network Analysis Platform. We
do not perform de-anonymization attacks on live networks, scraped
data, or previously unlinkable datasets.

2. MOTIVATION: THE D4D CHALLENGE
In July 2012 Orange unveiled the Data for Development (D4D)

challenge1 to promote research in behavioral science in the Ivory
Coast using a number of mobile call datasets. The datasets are
based on “anonymized” call detail records extracted from Orange’s
customer base. The data was collected for 150 days, from December
1, 2011 until April 28, 2012, and contains 2.5 billion calls and SMS
exchanges between around 5 million users, i.e. a quarter of the
Ivory Coast population. Teams with access to the datasets had to
sign appropriate non-disclosure and ethics agreements to protect
privacy and supplement the anonymization procedures employed.

Prior to release, the organizers asked us to evaluate the quality
of the anonymization scheme used. In total four datasets were
released for analysis [2]. In this work we concentrate on analyz-
ing the anonymization procedures for Dataset 4, representing an
anonymized phone call graph.

2.1 Data Release and Anonymization
The two variants of the anonymization process select a number of

highly connected individuals (egos) and output a social sub-graph
around them (egonets).
Scheme 1. The initial dataset contains sub-graphs of about 8 300
randomly selected individuals. Each sub-graph contains all commu-
nications amongst the egos and their contacts for up to 2 degrees
of separation. The data also includes the volume of calls, duration
of calls within a period and their directionality. The data spans a
period of 150 days which is split into two week chunks. Individuals
are assigned random identifiers which remain the same across time
slots but are unique to each sub-graph. This is meant to obfuscate
links between sub-graphs to prevent an adversary from reconstruct-
ing a larger communication graph by stitching sub-graphs together.
We refer to this anonymization strategy as “Scheme 1”.
Scheme 2. Following our preliminary analysis the organizers in-
dependently modified the anonymization scheme prior to the final
release: the number of egonets released was reduced from 8 300 to
5 000; all links between the 2-hop nodes (friend-of-friend to friend-
of-friend of the ego) were deleted; the number of calls, duration
of calls and the directionality of calls between two users was re-
moved; calls with easy to re-identify features were removed, such
as to or from public phones. These changes degrade the information
available to adversaries but, as we demonstrate, they do not guaran-
tee anonymity. We refer to the modified anonymization strategy as
“Scheme 2”.

The toy example presented in Figures 1 and 2 illustrates the dif-
ference between the two schemes when anonymizing the same ego
sub-graph.

1
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Figure 1: Scheme 1 preserves the complete 2-hop network
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Figure 2: Scheme 2 removes edges between 2-hop nodes

2.2 Robustness of Anonymization
The intent behind both anonymization schemes is to obscure the

full social graph by only releasing unlinkable sub-graphs. Releasing
the full graph would lead to de-anonymization risks similar to those
presented against Netflix [15] or AOL2 datasets. The primary aim
of our privacy evaluation is to determine the extent to which the
same node in different anonymized sub-graphs may or may not be
linkable. Special attention needs to be paid to the false positive
rate, namely when we label two nodes as identical when in fact they
are not. Even a small false positive rate may in general introduce
considerable noise in piecing together sub-graphs, since matching
a node to a n-node sub-graph may only contain a single match but
at least n− 1 mismatches.
Success of de-anonymization. The success of de-anonymization
is measured by an individual’s risk of re-identification [15, 16, 19].
To model this we measure the probability of re-linking an individ-
ual present in two social graphs purely based on topology. More
formally, we measure the indistinguishability of an identical pair
of individuals from a random pair. Members of the pair belong to
different social networks under evaluation.

We note that we have concentrated on matching nodes between
egonets as a measure of success of de-anonymization for D4D. This
is the task we were required to perform when evaluating the actual
D4D dataset on behalf of the competition organizers. However,
this reduces to a lower bound on the probability of matching an
anonymized egonet with a fuller social graph or a fragment of the
social graph. One may simply take the full social graph and ap-
ply the anonymization procedure to generate egonets. Then our
techniques can be applied to determine a match.

Finally, our success rates need to be interpreted as lower bounds.
We use features and heuristics that are not complete: it is possible
that better ones may be found that improve the de-anonymization
rate. This is particularly true of the heuristics used as part of our
machine learning approach. Automatically trained classifiers are
capable of out-performing humans in many tasks, but are limited

2
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when it comes to using higher level features. Thus our results, even
when de-anonymization rates are low, can never be interpreted as a
proof of security, only an illustration of vulnerability.

2.3 Ad-hoc De-anonymization
We first present an ad-hoc attack on Scheme 1 that links nodes

across egonets. We observe that we may encounter three distinct
cases when linking nodes from two different egonets, that allow
different types of analysis:
Case 1: “1-hop”. Both nodes are at a distance of 1-hop from the

ego, or are the ego in both sub-graphs;
Case 2: “1,2-hop”. Only one of the two nodes is 2-hops from the

ego in one sub-graph;
Case 3: “2-hop”. Both nodes are at a distance of 2-hops from the

ego in both sub-graphs.
Given a large egonet it is easy to detect which of the cases we are
tackling by first identifying the ego. In a medium-sized sub-graph it
is the single node from which all others are at most 2-hops away. If
more than one node satisfies this relation we cannot detect the ego
accurately. However, this does not affect the attack.

The ad-hoc attack exploits the variability of degree distributions
of nodes in social networks, which is known to approximately fol-
low a power-law [12]. We observe that the entire 1-hop neighbor-
hood of nodes that are friends of the ego, is preserved in Scheme 1
(since the full degree 2 graph is extracted). Therefore for Case 1
node pairs we can generate a signature for nodes that is invariant
under the anonymization procedure: the signature for each node
consists of the sorted list of degrees of all the nodes in its 1-hop
network. For example, if a 1-hop node has 3 friends with degree 19,
8, and 25 in its 1-hop network then its signature is {3, 8, 19, 25}.
When a large signature of two 1-hop nodes, in different egonets,
matches exactly we classify them as being the same node. We
present an evaluation of the effectiveness of this attack in Section 4.

2.4 Limitations of Ad-hoc De-anonymization
We tried to extend the attack to node pairs in Case 2 and Case 3 by

using an approximate match on their common 1-hop nodes. Since
considerable parts of the neighborhood of 2-hop nodes are deleted
we cannot use an exact signature match on them. Perhaps unsur-
prisingly, we got mixed results for this approach and they were
neither consistent nor robust. Extending the attack to Scheme 2 was
even more restrictive, the exact signature match is not applicable
for Case 1 due to the edges being deleted in relation to the ego, thus
precluding any extension to other categories.

The failure to generalize this approach is quite limiting: overlaps
between egonets are likely to contain a 2-hop node rather than exclu-
sively 1-hop nodes, since the number of 2-hop nodes is considerably
larger. We do not discuss an ad-hoc extension of this attack any fur-
ther, and simply consider it inapplicable for Scheme 1 Cases 2 and
3 and Scheme 2 completely.

Overall, constructing such ad-hoc attacks is an expensive proce-
dure. It requires manual identification of some invariant property
between sub-graphs. It is also rare that such ad-hoc attacks make
use of a combination of weak features – since identifying them by
hand would be a laborious process. A reliance on quasi-invariant
features makes such ad-hoc attacks quite fragile. This is exemplified
by the anonymization procedure of Scheme 2 that severely degrades
features vital to the ad-hoc attack, namely the edges between the
2-hop nodes.

This points to a more significant problem, relating to the eco-
nomics of privacy research: designing new variants of anonymiza-
tion procedures is cheap; analyzing them requires manual labor to
extract new complex invariants, even when the schemes are quite

obviously leaking a lot of identifying information. Instead, we pro-
pose a general approach that applies to the analysis of anonymized
social graphs. It uses machine learning to automatically learn in-
variants or informative relations between the same node in different
egonets or sub-graphs.

3. LEARNING DE-ANONYMIZATION

3.1 De-anonymization: A Learning Problem
A large number of variants of anonymization algorithms can be

devised at low cost through combinations of sampling, injecting ran-
dom nodes, removing specific or random nodes, or picking specific
sub-graph. Each variant would traditionally require careful manual
analysis to devise an effective de-anonymization strategy. Thus the
evaluation of such algorithms – and the demonstration that they per-
form poorly – is a labor intensive process. However we observe a
key commonality of “useful” anonymization procedures: they need
to preserve a rich set of generic features of the original graph, and
its subgraphs, to provide an acceptable degree of utility to legiti-
mate data users. As a consequence a subset of those features may
be automatically refined as identifiers to de-anonymize the nodes.

We propose to replace the manual process of devising de-
anonymization strategies by a generic learning algorithm. The learn-
ing algorithm takes an anonymization algorithm and automatically
learns a model that allows the de-anonymization of a significant
fraction of social network nodes. The learning algorithm does not
require a full description of the anonymization scheme. Instead, we
provide the learning algorithm with examples of network nodes that
are meant to be unlinkable. The algorithm then automatically learns
sets of features that constitute effective invariants that allow linking
and de-anonymization.

Two de-anonymization problems are considered in this paper
within the generic learning framework:
• Linkage between sub-nets: Two vertices in two different

anonymized sub-graphs are presented to the algorithm, which
must decide whether they represent the same subject or not.
This is the problem associated with linking ego-nets in the
D4D challenge. This task forms the core of our evaluation.
• Linkage between raw and anonymized graphs: A vertex

in a raw graph and a vertex in an anonymized graph are pre-
sented, and the algorithm has to decide whether they repre-
sent the same user. This more traditional task is discussed in
Section 4.4.

The models learned for the tasks above are in both cases presented
with two target user nodes in two different sub-graphs. Ultimately,
their task is to classify the two target graph nodes as representing
the same user or not.
The role of training examples. Our learning algorithm makes use
of examples of anonymized graphs, to learn invariants that can be
used to link nodes. These can be generated at will by applying a
black-box anonymization algorithm. It is best if the training ex-
amples come from the same distribution as the target anonymized
networks. For example, the D4D challenge publishes mobile phone
call graphs, so using some mobile phone call graph to generate
training examples is best. Finding some example call records, and
processing them to produce examples of anonymized sub-graphs
is easy for a serious adversary. We note that the training examples
do not have to contain any nodes that will be in the actual target
anonymized graphs, unlike previous approaches [16] that required
known seeds to bridge anonymized and raw graphs. Thus, for exam-
ple, one may use an available call sub-graph from one operator to
train an attack on anonymized call graph from a competing operator.



In Section 4.2 we provide an extensive analysis in this setting, with
very few training examples.

However, we note that training examples uncover artefacts of the
anonymization technique that enable attacks, not merely quirks of
the specific training data. This is illustrated (Section 4.3) by the fact
that training examples from graphs of a very different nature, leads
to de-anonymization success in other graphs.

3.2 Decision Trees and Random Forests
Our generic model for de-anonymization is represented as a col-

lection (forest) of decision trees on graph features, which are learned
using a random decision forest training algorithm. A detailed treat-
ment of decision forests and their applications can be found in Cri-
minisi et al. [5]. We present a brief overview of those techniques.

A random decision forest is an ensemble of randomly trained de-
cision trees [4, 9]. The predictions of each tree are collated together
resulting in a performance improvement.
Decision trees. A decision tree is comprised of nodes and edges
arranged in a hierarchical structure. We use binary trees in our work
because using n-ary trees (n > 2) does not provide significant
accuracy benefits [5]. The branch nodes of the tree are called split
nodes and the terminal nodes are the leaf nodes. A decision tree
uses a weak classifier at each split node to route an item to the
“left” or “right” child node based on its features. The item is routed
down the tree, ultimately reaching a leaf node where one class, or
a distribution over classes, is assigned. The features on which the
split node predicates are defined is problem specific – we propose
features to represent an anonymized graph in Section 3.3.
Training and testing. The tree training phase involves injecting
labeled data into the tree to optimize the split parameters at the
internal nodes and determining the leaf predictors. Each internal
node of the tree is associated with a binary classifier also known
as weak learner, whose output decides the data split for a given
parameter. Here SL denotes the set of points passed to the left
child of the split node, SR denotes the set of points passed to the
right child. We denote S as the set SL ∪ SR of all items used to
train a split node. To train each split node we select the feature that
maximizes the information gain objective function:

I = H(S)−
∑

i∈{L,R}

| Si |
| S | H(Si) (1)

where H(S) is the Shannon entropy of the labels in set S with
elements belonging to the set of classes C. Maximizing the informa-
tion gain at every split node decreases entropy of data and increases
confidence in tree prediction. Each leaf node stores the empirical
distribution of the classes associated with the subset of training data
reaching that leaf node. The predictor is defined as the probability
of a data point belonging to a particular class based on the distri-
bution. We only use binary classification, hence we have just two
classes.
The decision forest model. The trees of a random forest are trained
independently in parallel. A data point is classified by pushing it
through all the trees, branching left or right within each tree accord-
ing to the item features, until it reaches the leaves of all trees (this
process can also be parallelized). The prediction of each tree at the
corresponding leaf node is averaged to generate an aggregate forest
prediction, defined as

p(c|v) = 1

T

T∑
t=1

pt(c|v) (2)

where p(c|v) is the empirical probability (as computed by the ran-
dom forest) that given a feature vector v, it belongs to a data point
of class c, T is the number of trees and pt(c|v) is the prediction of
an individual tree. We use T = 400 trees in our experiments.

3.3 Specialized Social Graph Features
Random forests rely on finding features that when combined us-

ing many weak learners, classify the data accurately. Training en-
sures that the best features are retained, and their best conjunction
will be selected per tree. Different trees allow disjunctions of fea-
tures to contribute to classification.

A balance must be struck between too generic or too specific fea-
tures. If the features are too generic, in that they appear in most
sub-graphs, then classification will be akin to guessing. On the
other hand if they are too specific and rely on intricate graph struc-
tures, then they may be seriously damaged during anonymization.
In all cases efficient feature extraction is important to allow for fast
training and evaluation.

We use the degrees (number of friends) of the “friends" of a node
as features. Most anonymization strategies strive to preserve some
utility of the data, and damaging such a fundamental property of
graph elements unpredictably has an averse affect on utility. Hence,
the very fact node degrees are predictably perturbed also allows us
to mount an attack: we expect the distribution of degrees in the
neighborhood of sub-graph nodes to be related between different
ego-nets. Furthermore, neighborhood degree distribution can be
efficiently computed.

For each node in the social social network we define a feature
vector v = (c0, c1, . . . , cn−1) ∈ Z of length n made up of com-
ponents which are bins of size b. Each component represents the
number of neighbors that have a degree in a particular range. The
ith component is the count ci of the number of neighbors with de-
gree such that i · b < degree ≤ (i + 1) · b, where i ∈ {0, n − 1}.
If the degree exceeds the maximum possible range of n · b then it is
included in the last bin.

Binning of neighborhood degrees is performed for efficiency and
performance. Since the exact degree of the nodes across different
anonymized sub-graphs may vary, the exact degree is irrelevant,
and binning increases matching robustness. In our experiments we
use n = 70 and b = 15. Figure 3 illustrates the feature vector
v = (8, 4, 0, 0, 3, 0, . . . , 0, 2) of a node with neighbors of degrees –
{1, 1, 3, 3, 5, 6, 7, 13, 16, 20, 21, 30, 65, 69, 72, 1030, 1100}.

c0 = 8 c1 = 4 c2 = 0

size b = 15

n = 70 bins
. . .

. . .
c4 = 3

. . .

. . .
c69 = 2

Figure 3: Example node feature vector

Apart from the depicted values all bins contain 0’s.

3.4 Training and Classification of Node Pairs
The basic data point to be classified consists of a pair of node

features, each in a different egonet sub-graph. Let us denote the
feature vector belonging to a node np to be vp. Each node pair
(np, nq) is represented as a pair of vectors (vp, vq). The node pair
can be labeled as either “identical”, if the nodes np and nq are the
same nodes in different egonets; or “non-identical” if np and nq are
in fact different nodes. The objective of the classification task is to
infer the label of the pair (np, nq) on the basis of the feature vectors
vp and vq .
Training & Weak Learner. We use both bagging [3] and random-
ized node optimization [10] to train decision trees. The trees are



trained by injecting a random sample of data points at the root node.
The sample contains data points of each class in equal proportion.

The weak learner at each split node is presented with pairs of
feature vectors (vp, vq) and needs to decide whether they are as-
signed to the left or the right child node. To decide the split our
weak learner uses the Silhouette Coefficient between two sample
features x ∈ vp and y ∈ vq defined as:

δ(x, y) =


0 if x = y = 0

| x− y |
max(x, y)

otherwise
(3)

where x, y ∈ Z. Thus, for each feature pair (vp, vq) we can calcu-
late all n2 component pairs δ(vp[i], vq[j]), where i, j ∈ {0, n −
1}. For a given component pair (vp[i], vq[j]) the tree computes
δ(vp[i], vq[j]) and passes the data point to the left or the right child
depending upon threshold τ . During training each split node is as-
signed a τ that splits the data for a given (vp[i], vq[j]) to maximize
information gain. To choose the best τ for a given (vp[i], vq[j]) we
cycle through τ ∈ [0, 1] in steps of 0.05. We inject randomness in
the training of each split node by considering only a random 5% of
the total n2 (vp[i], vq[j]) tuples of features.

Once the values (i, j, τ) that best minimize entropy are deter-
mined for the split node, they are stored and do not change. The
training procedure is repeated for its child nodes. We stop growing
trees when the number of data points reaching a split node falls
below 10% of the total data points that were injected at the root
node. This provides a good balance between trees that are too deep
or too shallow, both of which provide poor results. Training ensures
that the most informative features out of those available are learned
at each split node. Randomizing the available set of features pro-
duces robust forests, that classify data according to a diverse set of
mutually supporting features.

Figure 4 illustrates a sample decision tree: the split nodes contain
the weak learner parameters, the left branches correspond to a False
result while the right branches correspond to True. The leaf nodes
store the count of (non-identical, identical) vector pairs reaching
that leaf. We note that the sets of features selected are, perhaps
surprisingly, not always from buckets close to each other. This is
counter intuitive but yields great classification success, illustrating
the difficulty of choosing such features manually.
Classification. This is the simplest part of the algorithm. Once the
decision forest has been trained, a previously unseen data point is
classified by each tree till it reaches the leaf node and the values at
all leaf nodes are recorded. At each leaf we calculate its probability
of corresponding to an identical or non-identical node pair as their
empirical distribution. For the highlighted leaf node in Figure 4
the empirical distribution is (6, 19) and the probability of being
classified as non-identical = 6

6+19
= 0.24 and probability of being

classified as identical = 19
6+19

= 0.76. After traversing each tree in
the forest all probabilities are averaged, as shown in equation 2, to
compute the final prediction.

We discuss our choices of random forest algorithm parameters in
Section 5.3.

4. EVALUATION
We evaluate the classifier by training and testing on publicly avail-

able real world social networks. Our analysis is based on datasets
obtained from the Stanford Network Analysis Platform3. We use
two social networks to demonstrate our results: Epinions – an on-
line social trust network of a consumer review site and Pokec – the

3
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δ(v1[0], v2[58]) ≤ 0.95

δ(v1[64], v2[0]) ≤ 0.95

δ(v1[22], v2[7]) ≤ 0.45

δ(v1[61], v2[20]) ≤ 0.95

δ(v1[54], v2[0]) ≤ 0.95

0,601,2

4,26

0,60

δ(v1[54], v2[2]) ≤ 0.95

δ(v1[49], v2[21]) ≤ 0.95

δ(v1[51], v2[11]) ≤ 0.95

δ(v1[67], v2[45]) ≤ 0.95

49,03,2

1,2

1,3

6,19

δ(v1[7], v2[29]) ≤ 0.45

δ(v1[52], v2[53]) ≤ 0.95

δ(v1[21], v2[68]) ≤ 0.95

δ(v1[0], v2[0]) ≤ 0.05

1,1

δ(v1[57], v2[37]) ≤ 0.95

112,03,1

1,2

0,3

18,19

False True

Figure 4: A randomly trained decision tree. The split nodes store
weak learners δ(vp[i], vq[j]) ≤ τ , the highlighted leaf node has
posterior of (0.24, 0.76)

most popular online social network in Slovakia. These different
types of networks illustrate the applicability of our automated de-
anonymization techniques across different types of social graphs.

We use a very small partition of each of those networks (see Sec-
tion 4.1) to produce labeled training sets for the two anonymization
schemes under consideration. Random forests are trained on the
labeled training sets, and evaluated on separate test sets. Success-
ful classification of test node pairs as “identical” or “non-identical”
illustrates the success an adversary would have in using our tech-
niques to attack the anonymization schemes.

To fully characterize the difficulty of de-anonymizing each type
of node pairs (1-hop, 1-to-2-hop or 2-hop, see Section 2.3) we also
consider each category separately. In those cases we set aside train-
ing and test data containing only pairs for that category. This does
not provide the adversary with any advantage, since the category of
a node and node pair can be inferred easily from the anonymized
egonets. We also provide an aggregate analysis with node pairs
from mixed categories. This is meant as a baseline representing
the most generic attack, where the adversary is not making use of
category information.

4.1 Experimental Setup
The D4D datasets motivating this study comprised 5 000 egonets

of nodes selected at random out of customer base of about 5 million.
In line with this we generate 100 egonets for the Epinions dataset
which has 75 879 nodes and 1 000 egonets for the Pokec dataset
which has 1 632 803 nodes. We select those 2-hop egonets to have
more than 400 nodes for Epinions and 800 for Pokec (to focus on
“important” nodes as in previous work). We only study linkage of
nodes with degree greater than 5; lower degree nodes have too little
information to be meaningfully re-identified in bulk.

Table 8 (Appendix B) lists the number of training links extracted
from the training ego-nets for different node pair categories. We
make no distinction between categories of non-identical node pairs.
For each classifier we train 400 trees, each with 600 identical node
pairs (of the appropriate category) and 600 non-identical node pairs
(1200 in total).
Figures of merit. The output of a trained random forest classifier
is a real value in [0, 1], where a higher score denotes a higher prob-
ability of nodes being non-identical. Decisions based on different
thresholds lead to a trade-off between True Positives (TP) (the frac-
tion of identical nodes that are labeled as identical), and False Posi-



tives (FP) (the fraction of non-identical nodes that are erroneously
classified as identical). For each classifier, each dataset and each
scheme we present the true positive rate, for selected values of false
positives rates (0.01%, 0.1%, 1% 10%, and 25%). The Receiver
Operating Characteristic (ROC) curves (Appendix D) illustrate all
trade-offs points between TP and FP. A summary of the quality of
the classifier is provided by the “area under the curve” (AUC) of the
ROC curve.

4.2 Results: Same Training Distribution
We first present the results of classification of identical versus

non-identical nodes when the training data comes from the same
distribution as the data to be classified.
Epinions. Table 1, summarizes the performance of the ad-hoc at-
tack in re-identifying node pairs of Case 1, Scheme 1. This hand
crafted specialized attack leads to almost perfect results. On 900
identical node pairs it identified each one of them; on testing for
4907 non-identical node pairs the algorithm was correct 99.98% of
the time. This is almost perfect classification, but the technique
cannot be generalized to other cases or schemes.

Table 1: Success percentage for ad-hoc de-anonymization of
Scheme 1 for Case 1 node pairs

Success percentage
Identical Non-identical

Epinions 100 99.98
Pokec 100 99.96

The automatic machine learning approach can be generalized to
all cases of both schemes, as summarized in Table 2. For the sake of
direct comparison, for Scheme 1 using a fixed small false positive
rate (0.1%) we can recover 90.39% of Case 1 links; we also recover
46.82% of Case 2 links, and 17.36% of Case 3 links. The attack
generalizes to Scheme 2 where we can recover 52.92%, 25.95% and
7.33% of links in Cases 1, 2 and 3 respectively. Despite Scheme 2
leading to lower re-identification rates, for a fixed false positive rate,
we observe they are never negligible, and a released dataset is likely
to lead to the linkage of a significant number of individuals between
“unlikable” sub-graphs. For even smaller false positives a significant
number of Case 1 links are recoverable: 70.81% for Scheme 1 and
35.08% for Scheme 2. Case 2 linkage is also never negligible and
higher than 11.37% for both Schemes. If the adversary has any
side information (such as seed nodes) that can be used to establish
a good prior, a higher rate of false positives (1%) can be tolerated
with linkage rates of over 35.67% even for the hardest Case 3 links.

Figure 6 (Appendix D) illustrates the ROC curves for Scheme 1
and Scheme 2 for all types of node pairs along with area under the
ROC curve (AUC). We note that the AUC for Scheme 2 is consis-
tently above 95% for all link categories, higher than for Scheme 1
for Cases 2 and 3. This is due to the classifier performing signif-
icantly better for Scheme 2 when high false positive rates can be
tolerated – which may or may not be the case depending on adver-
sary side information.

Overall, the machine learning approach yields good results for
Scheme 1, Cases 2 and 3 which the ad-hoc de-anonymization could
not attack. More importantly, it yields good results for Scheme 2,
on which the ad-hoc attack was not applicable. As expected, we get
better results for the 1-hop category of node pairs, and for Scheme 1,
which retain the most information from the original graph.

Table 2: Epinions (self-validation): False Positive vs. True Positive
for both schemes

Scheme 1
False Positive 0.01% 0.1% 1% 10% 25%

1-hop 70.81 90.39 96.80 99.38 99.63
1,2-hop 30.35 46.82 67.25 87.15 93.35
2-hop 5.11 17.36 35.32 68.42 84.65
Complete 4.41 17.76 35.67 68.08 83.79

Scheme 2
False Positive 0.01% 0.1% 1% 10% 25%

1-hop 35.08 52.92 82.87 97.33 100.00
1,2-hop 11.37 25.95 62.11 83.95 93.70
2-hop 1.86 7.33 47.71 99.98 100.00
Complete 0.34 5.89 36.33 94.99 98.62

Table 3: Pokec (self-validation): False Positive vs. True Positive for
both schemes

Scheme 1
False Positive 0.01% 0.1% 1% 10% 25%

1-hop 27.50 42.92 51.04 88.75 93.96
1,2-hop 5.25 11.58 36.16 73.24 88.68
2-hop 0.00 12.55 23.15 49.14 69.96
Complete 0.01 10.44 20.48 47.60 68.36

Scheme 2
False Positive 0.01% 0.1% 1% 10% 25%

1-hop 4.20 16.26 49.89 97.20 99.58
1,2-hop 0.79 6.41 28.32 73.88 94.66
2-hop 1.62 12.12 50.42 99.96 99.99
Complete 0.68 6.12 21.14 64.12 86.10

Pokec. The results on the Pokec network are summarized in Table 3,
and are similar to Epinions, which supports the general applicabil-
ity of the attack. The ad-hoc attack against Scheme 1 gives almost
perfect results. For Case 1 and 2 links the true positive linkage rate
of the machine learning re-identification procedure is 42.92% and
11.58% for Scheme 1; for Scheme 2 they are 16.26% and 6.41% re-
spectively (for a 0.1% false positive rate). Interestingly, the linkage
rate for Case 3, which was the lowest in the Epinions network, now
outperforms Case 2 and is on par with Case 1 when higher false
positive rates are tolerable. This is likely due to a lower degree of
overlap in the neighborhood of non-identical nodes resulting from
sampling links out of 1 000 ego-nets rather than 100 as was the case
for Epinions.

Figure 9 (Appendix D) illustrates the ROC curves for the Pokec
network and the AUC.

4.3 Results: Different Training Distribution
In this section we evaluate the performance of the classifiers

trained on totally different distributions. For this, we turn the classi-
fier trained on the 100 Epinions ego-nets to classify test data from
Pokec (Table 5), and vice versa, we use the classifier trained on
1 000 Pokec ego-nets to classify the Epinions test data (Table 4).



The two networks are of a totally different nature: Epinions is a
small web-of-trust on a consumer reviews site; Pokec is a much
larger national social network.

It is clear that a different training distribution has a detrimental ef-
fect on the quality of classification for very low false positive values.
For a false positive rate of 0.1% Case 1, 2 and 3 links in the Pokec
network are linked at a rate of 27.29%, 10.10% and 4.18% respec-
tively for Scheme 1, and 5.40%, 2.08% and 13.57% for Scheme 2
(Table 5). The results on the Epinions network see a similar fall
(Table 4). Despite this, they never become small enough to guar-
antee that the likelihood of linking is negligible. For higher false
positive rates (1%) the linkage rate becomes significant again, par-
ticularly for Case 1 links, with success rates of 34.79% (Scheme 1,
Pokec), 12.29% (Scheme 2, Pokec), 53.45% (Scheme 1, Epinions)
and 64.51% (Scheme 2, Epinions). The linkage rate for the Pokec
network under Scheme 2 is the largest for Case 3 links, namely
13.57% (0.1% FP), and a surprising 45.45% (1% FP).

We conclude that while training on examples from a totally differ-
ent distribution yields lower true positive rates for equivalent false
positive rates, it does not lead to secure configurations of either
anonymization Scheme 1 or 2. If data were to be released, a signifi-
cant number of links, particularly Case 1 links, could be uncovered
with a low error rate. Where the adversary can use side informa-
tion to build better priors (using additional attributes or known seed
nodes as suggested by previous research) a significant fraction of
the links would be recovered.

Table 4: Epinions (x-validation): False Positive vs. True Positive
for both schemes

Scheme 1
False Positive 0.01% 0.1% 1% 10% 25%

1-hop 17.86 43.60 53.45 74.63 85.34
1,2-hop 2.71 6.11 19.79 57.65 78.54
2-hop 0.13 0.68 5.99 35.99 64.20
Complete 0.05 1.87 7.52 33.40 61.54

Scheme 2
False Positive 0.01% 0.1% 1% 10% 25%

1-hop 1.44 6.56 64.51 93.64 99.69
1,2-hop 0.57 3.27 23.80 82.46 91.93
2-hop 0.03 1.17 9.72 99.69 99.99
Complete 0.72 2.96 23.42 93.12 97.75

4.4 Traditional De-anonymization Task
To assess the generality of the proposed algorithm we apply it

to the traditional de-anonymization task, which requires mapping
individuals between two different social networks. The adversary
uses auxiliary information from a social network at their disposal to
compromise privacy using the learned mappings from the released
network. Narayanan and Shmatikov [16] present an attack based on
topology to map node pairs across social networks that proceeds in
two phases: First, the attacker manually maps a few “seed” nodes
that are present in both the anonymized target graph and attacker’s
auxiliary graph; then a propagation phase begins which extends the
seed mappings to new nodes based on topology. The new mapping
is fed back to the algorithm, eventually resulting in re-identification
of nodes across the two graphs.

Table 5: Pokec (x-validation): False Positive vs. True Positive for
both schemes

Scheme 1
False Positive 0.01% 0.1% 1% 10% 25%

1-hop 19.38 27.29 34.79 57.92 76.25
1,2-hop 2.98 10.10 26.52 70.37 90.72
2-hop 1.71 4.18 18.84 39.12 52.52
Complete 1.89 4.05 16.83 36.81 50.76

Scheme 2
False Positive 0.01% 0.1% 1% 10% 25%

1-hop 2.11 5.40 12.29 28.29 60.26
1,2-hop 0.18 2.08 14.34 49.25 70.76
2-hop 3.02 13.57 45.45 99.80 100.00
Complete 1.00 5.61 19.22 56.90 72.76

The performance of the algorithm is evaluated in [16] by syn-
thetically generating target and auxiliary graphs from a real social
network. To generate auxiliary and target graphs two subsets of
nodes V1 and V2 are sampled from a real social network G with
V nodes and E edges, G = (V,E). The overlap αV between V1

and V2 is measured in terms of Jaccard Coefficient, defined for two
sets X and Y as JC(X,Y ) = |X∩Y |

|X∪Y | . To obtain a node overlap
of αV V is partitioned randomly into three subsets VA, VB and
VC of size 1−αV

2
|V |, αV |V | and 1−αV

2
|V | respectively and set

V1 = VA ∪ VB and V2 = VB ∪ VC .
Further noise is injected through edge perturbation – deleting

edges between nodes in V1 and V2 at random. This is done by mak-
ing two copies of E and independently deleting edges at random
from each copy. The two copies are then projected on to V1 and
V2 to obtain E1 and E2. Deleting a fraction β of edges from each
copy produces a fraction of (1− β)2 common edges and a fraction
of 1 − β2 present in at least one copy. Thus the edge overlap is,
αE = (1−β)2

1−β2 , to obtain this edge overlap between subgraphs com-
mon to both graphs a fraction β = 1−αE

1+αE
of edges must be deleted

from each copy of E.
Given the graphs V1, V2 we trained our classifier to distinguish

a node pair as being identical or non-identical. A handful of seed
mappings are used to train the learning algorithm. We note that
unlike [16] which requires seeds to be part of a 4-clique and of
high degree, our seed selection is unconditional. We tweaked the
features slightly to take advantage of the global information: we
add the 1-hop feature vector (see Section 3.3) to the feature vector
of the 2-hop neighborhood of the target node to produce a vector
twice as long. Decision trees only consider component pairs from
the corresponding neighborhood vector to decide the split, i.e. a
feature of 1-hop neighborhood is never matched to a feature of 2-
hop neighborhood. We use the Flickr social graph [21] (also used
in [16]) to generate V1 and V2 of size about 50 000 nodes with an
αV = 0.25. We train 400 trees with 5 000 non-identical pairs and a
varying number of identical pairs (seeds) – 10, 50, 250, 1250, and
carry out testing on 10 000 pairs of each class.

Table 6 demonstrates that even with as few as 10 seeds we get
significant true positive rate (16.74%) for an appropriately low false
positive rate (1%). Increasing the number of seeds and edge overlap
improves the results. The re-identification achieved by our classi-
fier is not dependent on a critical mass of seed mappings, large
scale re-identification in the algorithm presented by Narayanan



and Shmatikov depends sharply on the number of seed mappings.
Our classifier degrades gracefully as the number of seeds are de-
creased. The results are similar even when the classifier is trained
with graphs generated using Epinions and then used to attack graphs
generated using Flickr, this conclusively points towards learning de-
anonymization independent of data being analyzed.

We present a shoulder to shoulder comparison of our approach,
hence the results presented use seed mappings between graphs gen-
erated using Flickr. (We note that the previous results [16] are re-
ported as absolute success or error percentages on a global matching
task, rather than a pair-wise matching task, and a specific dataset.
They report 30.8% of mappings being re-identified correctly, 12.1%
incorrectly, and 57% not being identified. Sadly, we cannot com-
pare the results directly, since we do not perform a global match.)

Table 6: Flickr (edge perturbation): False Positive vs. True Positive

Varying number of seeds (αE = 0.25)
False Positive 0.01% 0.1% 1% 10% 25%

10 seeds 0.14 3.23 16.74 52.39 78.39
50 seeds 0.72 5.61 22.01 58.38 84.20
250 seeds 3.68 7.19 22.32 58.61 85.14
1250 seeds 0.86 5.97 23.52 60.26 86.43

Varying edge overlap (50 seeds)
False Positive 0.01% 0.1% 1% 10% 25%

αE = 0.25 0.72 5.61 22.01 58.38 84.20
αE = 0.50 0.71 8.66 24.39 66.07 87.76
αE = 0.75 0.16 4.69 17.60 67.85 89.12
αE = 1.00 2.69 8.53 24.64 74.24 93.07

4.5 Error Analysis
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Figure 5: True Positive and False Positive rates vary widely depend-
ing on the social neighborhood overlap

This section investigates a key source of false positives, namely
graph overlap between distinct nodes. The features used to charac-
terize and match nodes are based on the degrees of its neighbors.
Therefore we expect nodes that share a significant number of friends
would be harder to distinguish than those sharing few.

To study this hypothesis, we classify 10 000 identical pairs and
10 000 non-identical pairs, that have been anonymized using the
edge perturbation technique (with αE = 0.25, 50 seeds, see Sec-
tion 4.4). The classifier is tuned to achieve an overall 1% false

positive rate, leading to an overall true positive rate of about 20%.
Pairs are also categorized according to the Jaccard Coefficient (JC)
of their 2-hop social networks, on which their feature vectors are
computed, which provides a degree of social overlap.

Figure 5 illustrates that the True Positive and False Positive rates
vary widely depending on the social overlap of the tested pairs.
When the overlap is small (JC 0.00 – 0.05) the false positive rate
is extremely low at 0.31%, but the true positive rate also suffers
greatly. However, when the overlap is significant (JC ≥ 0.15) both
True Positive (63.79%) and False Positive rates (37.5%) rise sig-
nificantly above the overall baseline. However, only a very small
fraction of non-identical pairs have such a high JC (0.24%) , com-
pared to a large fraction of identical pairs (8.81%), leading to a
small overall error for this category.

We conclude that False Positives links are likely to occur with
nodes in the social vicinity of the actual match. Thus, even erro-
neous positives allow an adversary to identify the social neighbor-
hood of a match, even if the exact matched node is incorrect.

5. DISCUSSION
We have shown that the machine learning approach to de-

anonymization and linkage can be successful. Furthermore, we
establish that training can be performed on different graphs than the
ones being attacked. Our core evaluation is performed by training
on a small separate set of egonets derived from the same distribu-
tion for training and testing. The resulting classifiers are able to
de-anonymize egonets with no previously seen nodes. Additionally,
classifiers trained on data from a totally different distribution (Epin-
ions and Pokec cross-classification) still perform well enough to
classify a non-negligible fraction of pairs as identical, even for low
false positive rates. At the very least they can be used to identify
a number of common seed nodes, to support further linkage that
can tolerate higher false positive rates. We also show that the clas-
sifier generalizes well and successfully handles de-anonymization
task in the traditional setting. This provides further evidence of its
applicability to evaluate novel anonymization schemes applied to
diverse datasets. We expect this type of analysis to be most rele-
vant to the evaluation of any new anonymization algorithm, since as
demonstrated finding suitable graphs and generating training data
is easy.
Resilience of classifier. The resilience of the classifiers is due to
the differential nature of the training and the classification task: the
training algorithm is provided pairs of nodes, resulting from an
anonymization algorithm, and provided labels about whether they
are the same or not. As a result it learns invariants that are character-
istic of the anonymization method, not merely the data. One might
naïvely conjecture that basing the node feature vectors on neighbor-
hood degree distribution would be inept in attacking anonymization
schemes that perturb the node degree at random (Section 4.4). The
success of classification is not conditioned on the “invariance” of the
node degrees but on their “variance” as a function of the anonymiza-
tion strategy. This function can be learned and hence hedged to
attack the scheme. We conjecture that purely synthetic specially
crafted graphs may be equally (or even better) suited to train the
classifiers, but we leave this investigation for future work.

5.1 Is Anonymization Effective?
So are anonymization Schemes 1 & 2 effective? First, it is clear

that Scheme 2 is mildly more effective than Scheme 1. Given an
egonet, Scheme 1 exposes more nodes to our attack than Scheme 2
due to lesser damage to the node degrees. Also, the true positive rate
of the classifier is lower for any fixed acceptable false negative rate.



However, even for extremely low false positive rates of 0.01% a
non-negligible fraction of the nodes are correctly classified ranging
from 1.86% for 2-hop nodes to 35.08% for 1-hop nodes (Epinions)
and from 1.62% to 4.20% (Pokec). First, a person may with non-
negligible probability be within a successfully linked pair. Second,
extremely high confidence matches can be used to piece together
disparate egonets into larger graphs. Those larger graphs, with some
common nodes, can be then further used to de-anonymize other
users.

Therefore we believe that the linking rates we observed are too
high for the original social network to be effectively unrecoverable.
We conclude that the D4D competition organizers were prudent to
limit the disclosure of the dataset to known participants and require
contractual assurances that they will not de-anonymize the data.

5.2 Improving De-anonymization
The D4D data release provides access to egonets observed be-

tween different time slots, with same identifiers across time slots
(see Section 2.1). We can amplify our classification success by
classifying a candidate node pair in each time slot and then apply-
ing a majority rule for deciding the true association – identical or
non-identical. Such an attack is significantly more potent than one
possible on an aggregated social graph across all time periods. The
original D4D dataset also contained edge weights. We chose to ig-
nore those to devise de-anonymization strategies for generic graphs
without such weights. However, the feature vector proposed could
be augmented to take those weights into account to generate distinct
features.

A key difference between the proposed de-anonymization algo-
rithm, and previous work [16], is the lack of reliance on known
“seeds”. Those seeds are adversary side-information, i.e. a few
known nodes between two unlinkable networks, that can be used to
unravel the anonymization. Our algorithms take two totally distinct
egonets, for which no common node is known, and classify nodes
within them as identical or non-identical. In case some seeds are
known, our techniques can be applied to the common neighbors of
the seeds to determine whether they are the same node or not. In
that case larger false positive rates can be tolerated since the a-priori
probability of the nodes being the same is larger (by many orders
of magnitude) compared to any two random nodes. Since the pro-
posed approach works extremely well for larger false positive rates
(like 1%) we expect such a combined scheme to be extremely effec-
tive. A full investigation of the iterative application of the presented
method, to build up a full graph is beyond the scope of this work.

5.3 Choosing Tree Parameters
In this section we discuss the choice of parameters to train deci-

sion trees.
Forest size. Literature suggests [6, 18, 20] that testing accuracy in-
creases monotonically with the forest size T . Using a small forest
size decreases the accuracy of uncertainty and produces low quality
confidence estimates, this leads to erroneous generalization. Crim-
inisi et al. present examples in their report [5] which obtain good
results for T = 400, hence we have chosen the forest size to be 400.
We tested our results with T = 500 without any appreciable gain.
Randomness. We inject randomness while training using bagging
and random node optimization, which leads to a lower confidence in
the posterior, but smoother and more spread out posteriors. We use
bagging by passing 600 node pairs (per class) sampled at random
from the training data set (Table 8, Appendix B) to each tree. Every
split node is exposed to 5% of the total feature parameters. We
experimented by increasing the percentage to 10%, 20% and 25%
but did not observe any benefits.

Features. We use the feature vector length as 70 and bin size as
15. The intuition behind this choice is that most individuals in a
social network have fewer than 1 000 friends and the above choice
reflects this. We study the impact of vector length and bin sizes
by training a random forest with T = 200 and bagging with 200
node pairs (per class) for Epinions Scheme 2 (complete set of node
pairs). We experimented with vector lengths 21, 35, 105 and bin
sizes 50, 30, 10 respectively. Increasing the vector length increases
the complexity by a quadratic factor. Table 7 demonstrates that
the performance is similar for different vector lengths. The vector
length of 21 performs the best for the demonstrated example but we
found that our choice of vector length 70 works best over all across
multiple settings.

Finally, we experimented with D4D by selecting features beyond
the 1-hop neighborhood of the node pair under consideration. This
sharply increased our false positive rates. This is due to the fact
that many nodes share large parts of their 2-hop neighborhood, and
the number of features in that space is much larger than than in the
1-hop neighborhood. This is in contrast with the de-anonymization
features used in Section 4.4. This happens because the global prop-
erties of the overlapping sub-graph are better preserved when the
full graph is available instead of just the local neighborhood. Thus
allowing us to select the features from the diverse 2-hop network
without sharp increase in false positives. Picking parameters which
are optimal across all settings is a hard task, instead we focus on
developing techniques which perform well for appropriately chosen
parameters.

Table 7: Epinions: Varying vector length (Scheme 2 - Complete):
False Positive vs. True Positive

Varying feature vector length
False Positive 0.01% 0.1% 1% 10% 25%

21 X 50 1.07 11.16 37.62 90.88 97.35
35 X 30 0.40 3.78 22.97 91.45 97.75
70 X 15 0.49 1.49 21.01 91.87 97.99
105 X 10 0.49 2.39 21.38 92.37 97.82

6. RELATED WORK
Anonymizing social networks has proven to be a tough challenge.

Backstrom et al. presented [1] active (using sybil nodes) and passive
attacks based on searching patterns in sub-graphs to learn relation-
ships between pre-selected target individuals of an anonymised so-
cial graph. Group membership has been shown [19] to be sufficient
to identify an individual in a social network.

Narayanan and Shmatikov present [16] a de-anonymization at-
tack on a social network using auxiliary information from a different
social network. They are also the first to note that a large volume
of matching errors will be in the vicinity of the actual matching
nodes. Similar techniques have been used to attack Netflix dataset
by co-relating it with IMDb dataset [15]. We test our algorithm
in this setting but also highlight some key differences that makes
their approach hard to apply to the D4D dataset. The algorithm
proposed aims to link two large correlated social networks. How-
ever, the D4D dataset is split into small ego-nets. Consequently, one
cannot straight-forwardly apply a method based on identifying few
known seed users and expanding from them, since such a propaga-
tion would naturally end at the boundaries of each ego-net. For this
reason our learning approach does not make use of known seeds, but



instead we use training examples that do not necessarily comprise
the nodes in the sub-graph to be de-anonymized. This allows the
proposed approach to train on different graphs, and still link nodes
in small subgraphs of other networks. However, we note that when
a large subgraph is available the two approaches may be combined:
one may use the techniques proposed in this paper to identify few
seeds with high certainty, and then apply our techniques to identify
known nodes in their vicinity, which are more likely to be related
than random nodes.

Narayanan et al. de-anonymize [14] the Kaggle dataset released
for link prediction using a pre-crawled version of the same dataset.
Their work combines de-anonymization and link prediction using
random forests, however, the de-anonymization phase does not
use any machine learning. Random forests are used to predict
those links which pure de-anonymization could not. Additionally,
their work is based on availability of ground truth to mount de-
anonymization attack on a dataset which is not adversarial. Cukier-
ski et al. got very good results4 just using pure random forests for
link prediction, rather than de-anonymization, for the same dataset.
In contrast, we do not have directionality available for our graphs
and our feature extraction is simple and efficient, an important factor
for attacking huge datasets.

Our work uses these techniques for the first time in an adversar-
ial de-anonymization setting: whereas previous de-anonymization
techniques considered graphs that were organically noisy but struc-
turally intact. In contrast the D4D challenge organizers purposefully
and aggressively alter graph topology to prevent linkage.

7. CONCLUSION
Privacy leaks could have serious consequences when they per-

tain to countries like Ivory Coast which has a history of civil wars
and political unrest. Thus carefully evaluating the privacy of data
anonymization schemes, such as the ones made available by the
D4D competition is imperative. Traditionally such an analysis had
to be performed manually, and painstakingly repeated for any new
variant of the anonymization scheme, despite general results indicat-
ing social network anonymization schemes are likely to be broken.
Our approach bypasses the need for manual effort, and can uncover
artefacts of the anonymization process just using examples that al-
low to re-linking nodes in “anonymized” networks.

In terms of the specific anonymization procedures for the D4D
competition motivating this study: we do conclude that Scheme 2
is marginally harder to de-anonymize and re-link than the original
Scheme 1 we evaluated. Despite this, neither provide a level of
privacy we would recommend for public release of data. Even a
reliable linkage rate of 1% would lead to a significant fraction of the
mobile operator customers being potentially linked. Big data makes
even a relatively low probability linkage events a certainty. In fact
for a number of realistic configurations we show the linkage rate was
much higher, leading to efficient attacks particularly if some side
information is available to build good priors and tolerate slightly
higher false positives. Thus we are relieved that the competition
only released such data under confidentiality agreements.

The approach, and learning task we rely upon, to link or de-
anonymize, are purposefully simple: it only uses the graph topol-
ogy, not attributes, directionality or multiple snapshots of graphs
over time, despite the availability of such data in some cases. It also
considers a single pass of the procedure, where no known seeds
are available. It is clear that richer features could be used, and the

4
http://blog.kaggle.com/2011/01/14/how-i-did-it-will-

cukierski-on-finishing-second-in-the-ijcnn-social-
network-challenge/

attack can be iterated once a handful of nodes have been uncovered
to unravel larger graphs. These could be topics for future work, and
perfecting such attacks could be a fruitful research field for years.

However, pursuing too far such a research program may yield
diminishing returns. Our results confirm previous wisdom that
releasing anonymized social networks is likely to, either result in
privacy catastrophe, or very poor utility. This paper demonstrates
that even an automated algorithm can produce good enough de-
anonymization attacks. Thus, it may be more beneficial to research
instead alternative ways to perform social network analysis in a
privacy friendly manner, and without the need for “anonymized”
graphs.
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APPENDIX
A. DEFINITIONS

1. Ego - A graph node around which the egonet is generated.

2. Egonet - The local network centered around an ego derived
based on some function.

3. n-hop node - A node such that the shortest path length from
the node to the ego is n.

4. n-hop network - A node induced neighborhood graph around
an ego with all n-hop nodes included. It is also known as
n-hop neighborhood.

B. DATA SAMPLE SIZES
To run cross classification corresponding sample from the com-

plimentary dataset is used. For example to run cross classification
for Epinions Scheme 1 for 1-hop node pairs we used 451 Scheme 1
1-hop node pairs sampled from Pokec.

Table 8: Training and testing number of pairs for Epinions and
Pokec

Epinions Scheme 1 Scheme 2
Train Test Train Test

1-hop5 579 812 959 975
1,2-hop 51 716 10 000 11 407 10 000
2-hop 1 910 868 10 000 46 830 10 000
Complete 1 963 163 10 000 59 196 10 000
Non-identical 48 910 10 000 35 655 10 000

Pokec Scheme 1 Scheme 2
Train Test Train Test

1-hop5 451 480 3226 3075
1,2-hop 39 529 10 000 8418 7210
2-hop 1 036 966 10 000 9263 7349
Complete 1 145 419 10 000 20 907 10 000
Non-identical 124 171 10 000 495 353 10 000

Table 9: Scheme 1: Sample sizes for ad-hoc de-anonymization of
Case 1 node pairs

Sample sizes
Identical Non-identical

Epinions 900 4907
Pokec 1000 5000

Table 10: Training and testing number of pairs for Flickr

Varying number of seeds (αE = 0.25)
Train Test

10 seeds 10 10 000
50 seeds 50 10 000
250 seeds 250 10 000
1250 seeds 1250 10 000
Non-identical 5000 10 000

Varying edge overlap (50 seeds)
Train Test

αE = 0.25 50 10 000
αE = 0.50 50 10 000
αE = 0.75 50 10 000
αE = 1.00 50 10 000
Non-identical 5000 10 000

C. PERFORMANCE
All experiments were run on a commodity laptop. Code for the

entire project is written in pure Python and run using CPython. Time
taken to extract features as described in Section 3.3 is less than 6
minutes for Scheme 1 and less than a minute for Scheme 2 for both
datasets. Table 11 shows the time taken to train forests with 400
trees of each class of identical node pairs and run the classifier for
5When there were fewer than 600 node pairs we trained each tree with all the nodes
available.



both schemes and datasets. Testing time of cross classification is
similar to the corresponding reported times. Since trees in a forest
are independent of each other, training and testing can be run in
parallel. However we present the time it takes to perform these
operations on a single core. Table 12 includes the same details for
Flickr edge perturbation strategy.

Table 11: Training and testing times for Epinions and Pokec

Epinions Scheme 1 Scheme 2
Time (hrs) Train Test Train Test

1-hop 14.93 0.86 17.94 1.15
1,2-hop 15.96 1.60 15.93 2.09
2-hop 15.52 1.87 15.44 1.59
Complete 15.58 1.96 16.17 2.08

Pokec Scheme 1 Scheme 2
Time (hrs) Train Test Train Test

1-hop 10.94 1.00 20.04 1.37
1,2-hop 14.58 2.18 18.15 2.05
2-hop 17.07 2.35 14.56 1.43
Complete 16.80 2.50 18.40 2.36

Table 12: Training and testing times for Flickr

Varying number of seeds (αE = 0.25)
Time (hrs) Train Test

10 seeds 0.72 0.27
50 seeds 3.21 0.79
250 seeds 5.42 0.97
1250 seeds 14.94 1.28

Varying edge overlap (50 seeds)
Time (hrs) Train Test

αE = 0.25 3.21 0.79
αE = 0.50 2.89 0.64
αE = 0.75 3.07 0.66
αE = 1.00 2.88 0.68

D. ROC CURVES FOR CLASSIFICATION
The diagonal line denotes the FP vs TP akin to guessing.
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Figure 6: Epinions (self-validation): ROC curves for both schemes
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Figure 7: Epinions (x-validation): ROC curves for both schemes
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Figure 8: Pokec (self-validation): ROC curves for both schemes
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Figure 9: Pokec (x-validation): ROC curves for both schemes
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Figure 10: Flickr: ROC curves for edge perturbation


