Security Enhanced Linux

Security Group Meeting
29 November 2002

Steven J. Murdoch

http://www.cl.cam.ac.uk/users/sjm217/

Computer Laboratory, University of Cambridge

° ° °
Copyright (©)Steven. J. Murdoch — p.1

Summary

Introduction and Predecessors to SELinux
Policy Structure

Software Architecture and Potential
Example of Policy Configuration

° °
Copyright (©) Steven. J. Murdoch — p.2

Project Goals 1

Support confidentiality and integrity
requirements

Fine grained control (compared to standard
POSIX privileges)
Greater range of permissions to be
granted (not simply read, write, execute)

Greater range of objects controlled (files,
sockets, network interfaces)

Greater range of trust in users (no “root”
user)

° °
Copyright (©) Steven. J. Murdoch — p.3

Project Goals 2

Flexible policy configuration

Features:
Separation of data and duty
Confidentiality
Containment of potentially flawed
programs
Integrity of data and applications
Ensure data is processed as required

Multi-Level Security (MLS) is not enough

Project Goals 3

Additional information available for security
decisions (as well as User ID and file
ownership)

Role of the user
Function of the program being used
Trustworthiness of the program being
used
Mandatory Access Control (MAC)
System-Wide security policy

Project Goals 4

Minimal privilege for each program

Child processes may have less privilege
than the parent

Extensible and flexible system architecture

Integrated with a mainstream operating
system

Small performance overhead

Some formal verification of architecture’s
security properties

°
Copyright (©) Steven. J. Murdoch — p.6

Previous projects

D TMach
DTOS

Fluke
University of Utah, Flux Research Group

Flask Architecture
SELinux

Software architecture

Enforcement and policy separate
Policy encapsulated by “Security Server”
Enforcement performed by “Object Managers”

Configuration language also defined by
Security Server

Flask architecture defines APl of Security
Server

Security contexts hidden, system manipulates
numerical SIDs

Access Vector Cache

Once a policy decision is made the result is
stored in the Access Vector Cache (AVC)

Object Managers store reference to the entry
in the cache

When policy is changed the AVC is flushed

Also object managers can register callbacks
which are invoked on policy change

Mapped file pages not invalidated on policy
change

Security Policy

Role Based Access control
Type Enforcement

Multi-Level Security (optional and not
discussed here)

° °
Copyright (©)Steven. J. Murdoch — p.10

Security Context Labels

Each subject (process) and object (file,
socket etc...) tagged
Security Context build from

User ID (after initial login — orthogonal to
Linux User ID)

Role (only for processes)
Type (object)/Domain (process)
MLS Level/Range (optional)

Logview source code

setuid (0) ;

system ("grep SUSER /var/log/messages")

° ° °
Copyright (©)Steven. J. Murdoch — p.12

Example Policy

Login Roles:
user sjm2l1l7 roles { user_r sysadm_r };
File tagging:

/var/log(/.*)?
system_u:object_r:var_log_t

/usr/local/bin/logview

system_u:object_r:logview_exec_t

° ° ° ° ° ° ° ° °
Copyright (©)Steven. J. Murdoch — p.13

Example Policy

Permit use:

role user_r types logview_t;
every_domain (logview_t)
Automatic domain transition:

domain_auto_trans (user_t, logview_exec_t,

logview_t

° °
Copyright (©)Steven. J. Murdoch — p.14

Example Policy

Grant Permissions:

allow logview_t var_log _t:file

r_file_ _perms

allow logview_t logview_t:capability
{setuid}

can_exec (logview_t, shell exec_t)

can_exec (logview_t, bin_t)

° ° ° ° ° ° ° ° °
Copyright (©)Steven. J. Murdoch — p.15

Logview execution (permissive mode)

[sjm217@tinfoil sim217]$ logview | head -n1
Nov 11 15:02:31 tinfoil su(pam_unix)[19462]: session
opened for user root by sim217(uid=500)

[sim217@tinfoil sim217]$ export USER="root /etc/shadow"

[sim217@tinfoil sim217]$./logiew/logview | head -n1
/etc/shadow:root:1L1IEQjXx$5YY8ybUYoalLIRX/bNuv.. .

° °
Copyright (©)Steven. J. Murdoch — p.16

Logview execution (enforcing mode)

[sjm217@tinfoil sim217]$ logview | head -n1
Nov 11 15:02:31 tinfoil su(pam_unix)[19462]: session
opened for user root by sim217(uid=500)

[sim217@tinfoil sim217]$ export USER="root /etc/shadow"

[sim217@tinfoil sjm217]% ./logiew/logview | head -n1
grep: /etc/shadow: Permission denied
/var/log/messages:Nov 11 15:02:31 tinfoil
su(pam_unix)[19462]: session opened for user root by
sjm217(uid=500)

° °
Copyright (©)Steven. J. Murdoch — p.17

	Summary
	Project Goals 1
	Project Goals 2
	Project Goals 3
	Project Goals 4
	Previous projects
	Software architecture
	Access Vector Cache
	Security Policy
	Security Context Labels
	Logview source code
	Example Policy
	Example Policy
	Example Policy
	Logview execution (permissive mode)
	Logview execution (enforcing mode)

