
Security Enhanced Linux
Security Group Meeting

29 November 2002
Steven J. Murdoch

http://www.cl.cam.ac.uk/users/sjm217/

Computer Laboratory, University of Cambridge

Copyright c©Steven. J. Murdoch – p.1



Summary

• Introduction and Predecessors to SELinux
• Policy Structure
• Software Architecture and Potential
• Example of Policy Configuration

Copyright c©Steven. J. Murdoch – p.2



Project Goals 1

• Support confidentiality and integrity
requirements

• Fine grained control (compared to standard
POSIX privileges)
• Greater range of permissions to be

granted (not simply read, write, execute)
• Greater range of objects controlled (files,

sockets, network interfaces)
• Greater range of trust in users (no “root”

user)

Copyright c©Steven. J. Murdoch – p.3



Project Goals 2

• Flexible policy configuration
• Features:
• Separation of data and duty
• Confidentiality
• Containment of potentially flawed

programs
• Integrity of data and applications
• Ensure data is processed as required

• Multi-Level Security (MLS) is not enough

Copyright c©Steven. J. Murdoch – p.4



Project Goals 3

• Additional information available for security
decisions (as well as User ID and file
ownership)
• Role of the user
• Function of the program being used
• Trustworthiness of the program being

used
• Mandatory Access Control (MAC)

• System-Wide security policy

Copyright c©Steven. J. Murdoch – p.5



Project Goals 4

• Minimal privilege for each program
• Child processes may have less privilege

than the parent
• Extensible and flexible system architecture
• Integrated with a mainstream operating

system
• Small performance overhead
• Some formal verification of architecture’s

security properties

Copyright c©Steven. J. Murdoch – p.6



Previous projects

• DTMach
• DTOS
• Fluke

• University of Utah, Flux Research Group
• Flask Architecture
• SELinux

Copyright c©Steven. J. Murdoch – p.7



Software architecture

• Enforcement and policy separate
• Policy encapsulated by “Security Server”
• Enforcement performed by “Object Managers”
• Configuration language also defined by

Security Server
• Flask architecture defines API of Security

Server
• Security contexts hidden, system manipulates

numerical SIDs

Copyright c©Steven. J. Murdoch – p.8



Access Vector Cache

• Once a policy decision is made the result is
stored in the Access Vector Cache (AVC)

• Object Managers store reference to the entry
in the cache

• When policy is changed the AVC is flushed
• Also object managers can register callbacks

which are invoked on policy change
• Mapped file pages not invalidated on policy

change

Copyright c©Steven. J. Murdoch – p.9



Security Policy

• Role Based Access control
• Type Enforcement
• Multi-Level Security (optional and not

discussed here)

Copyright c©Steven. J. Murdoch – p.10



Security Context Labels

• Each subject (process) and object (file,
socket etc. . . ) tagged

• Security Context build from
• User ID (after initial login — orthogonal to

Linux User ID)
• Role (only for processes)
• Type (object)/Domain (process)
• MLS Level/Range (optional)

Copyright c©Steven. J. Murdoch – p.11



Logview source code
...

setuid(0);

system("grep $USER /var/log/messages")

...

Copyright c©Steven. J. Murdoch – p.12



Example Policy

• Login Roles:

user sjm217 roles { user_r sysadm_r };

• File tagging:

/var/log(/.*)?

system_u:object_r:var_log_t

/usr/local/bin/logview

system_u:object_r:logview_exec_t

Copyright c©Steven. J. Murdoch – p.13



Example Policy

• Permit use:

role user_r types logview_t;

every_domain(logview_t)

• Automatic domain transition:

domain_auto_trans(user_t, logview_exec_t,

logview_t

Copyright c©Steven. J. Murdoch – p.14



Example Policy

• Grant Permissions:

allow logview_t var_log_t:file

r_file_perms

allow logview_t logview_t:capability

{setuid}

can_exec(logview_t, shell_exec_t)

can_exec(logview_t, bin_t)

...

Copyright c©Steven. J. Murdoch – p.15



Logview execution (permissive mode)

[sjm217@tinfoil sjm217]$ logview | head -n1
Nov 11 15:02:31 tinfoil su(pam_unix)[19462]: session
opened for user root by sjm217(uid=500)

[sjm217@tinfoil sjm217]$ export USER="root /etc/shadow"

[sjm217@tinfoil sjm217]$ ./logiew/logview | head -n1
/etc/shadow:root:$1$L1lEQjXx$5YY8ybUYoaLIRX/bNv. . .

Copyright c©Steven. J. Murdoch – p.16



Logview execution (enforcing mode)

[sjm217@tinfoil sjm217]$ logview | head -n1
Nov 11 15:02:31 tinfoil su(pam_unix)[19462]: session
opened for user root by sjm217(uid=500)

[sjm217@tinfoil sjm217]$ export USER="root /etc/shadow"

[sjm217@tinfoil sjm217]$ ./logiew/logview | head -n1
grep: /etc/shadow: Permission denied
/var/log/messages:Nov 11 15:02:31 tinfoil
su(pam_unix)[19462]: session opened for user root by
sjm217(uid=500)

Copyright c©Steven. J. Murdoch – p.17


	Summary
	Project Goals 1
	Project Goals 2
	Project Goals 3
	Project Goals 4
	Previous projects
	Software architecture
	Access Vector Cache
	Security Policy
	Security Context Labels
	Logview source code
	Example Policy
	Example Policy
	Example Policy
	Logview execution (permissive mode)
	Logview execution (enforcing mode)

