## Chip & PIN 5 years on



Steven J. Murdoch

#### http://www.cl.cam.ac.uk/users/sjm217/

work with Saar Drimer, Ross Anderson, Mike Bond



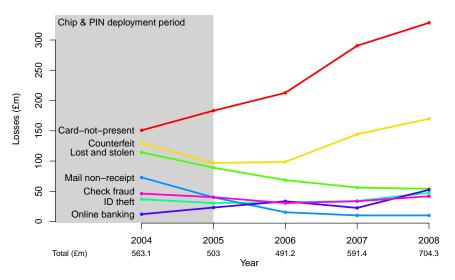
**Computer Laboratory** 



# Chip & PIN has now been running in the UK for about 5 years

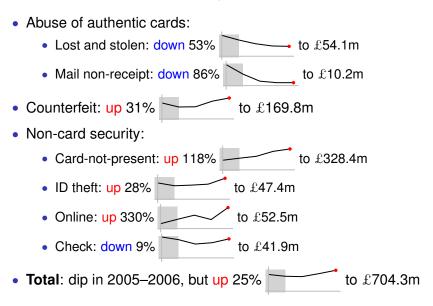
- Chip & PIN, based on the EMV (EuroPay, MasterCard, Visa) standard, is deployed throughout most of Europe
- In process of roll-out elsewhere
- Customer inserts contact-smartcard at point of sale, and enters their PIN
- UK was an early adopter: rollout in 2003–2005; mandatory in 2006
- Chip & PIN changed many things, although not quite what people expected






# Card payments in the UK are different from the US (and elsewhere)

|                   | Before Chip & PIN | After Chip & PIN  |
|-------------------|-------------------|-------------------|
| Cards             | magstrip          | magstrip and chip |
| Card verification | magstrip          | chip if possible  |
| ATM               | PIN used          | PIN used          |
| Point-of-sale     | signature used    | PIN used          |


- No difference between credit and debit cards
- No ID check at point-of-sale (signature rarely checked either)
- Introducing Chip & PIN really made two changes:
  - Chip used for authenticating card (ATM and PoS)
  - PIN used for authenticating customer (only new for PoS)
- The effects of the two changes are often conflated

#### UK fraud figures 2004–2008



Source: APACS

#### Key trends 2004–2008



# Counterfeit fraud mainly exploited backwards compatibility features

- Upgrading to Chip & PIN was too complex and expensive to complete in one step
- Instead, chip cards continued to have a magstrip
  - Used in terminals without functioning chip readers (e.g. abroad)
  - Act as a backup if the chip failed
- Chip also contained a full copy of the magstrip
  - Simplifies issuer upgrade
  - Chip transactions can be processed by systems designed to process magstrip
- Criminals changed their tactics to exploit these features, and so counterfeit fraud did not fall as hoped
- Fraud against UK cardholders moved outside of the UK

### Criminals could now get cash

Criminals collected:

- card details by a "double-swipe", or tapping the terminal/phone line
- PIN by setting up a camera, tapping the terminal, or just watching

Cloned magstrip card then used in an ATM (typically abroad)

In some ways, Chip & PIN made the situation worse

- PINs are used much more often (not just ATM)
- PoS terminals are harder to secure than an ATM



Tonight (ITV, 2007-05-04)

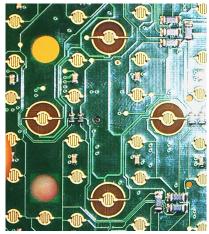
# Terminal tamper proofing is supposed to protect the PIN in transit

- In PoS transaction, PIN is sent from PIN entry device (PED) to card for verification
- Various standard bodies require that PEDs be tamper proofed: Visa, EMV, PCI (Payment Card Industry), APACS (UK bank industry body)
- Evaluations are performed to well-established standards (Common Criteria)
- Visa requirement states that defeating tamper-detection would take more than 10 hours or cost over USD \$25,000 per PED

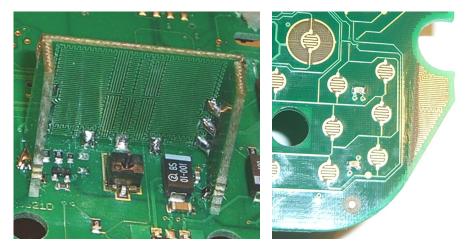




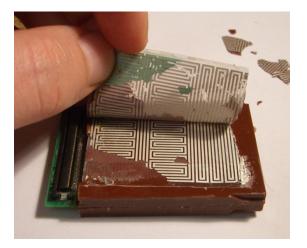





#### Protection measures: tamper switches




#### Protection measures: tamper switches






#### Protection measures: tamper meshes



#### Protection measures: tamper meshes



# BBC Newsnight filmed our demonstration for national TV



BBC Newsnight, BBC2, 26 February 2008

# Holes in the tamper mesh allow the communication line to be tapped



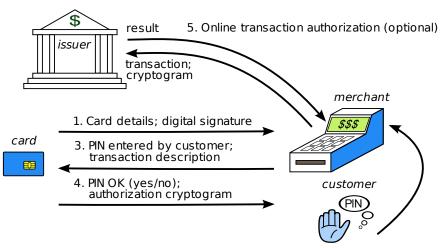
An easily accessible compartment can hide a recording device

# This type of fraud is still a serious problem in the UK

Initially (2005), PEDs were tampered on a small scale and installed by someone impersonating a service engineer

PED was collected later, and card details extracted

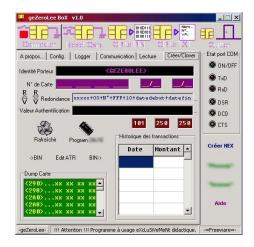
Now PEDs are being tampered with at or near their point of manufacture


A cellphone module is inserted so it can send back lists of card numbers and PINs automatically

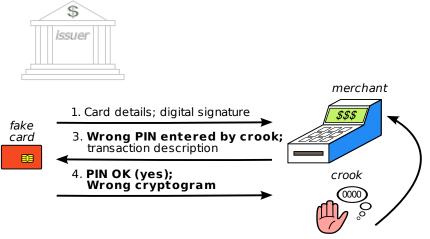


# Chip & PIN vulnerabilities

- Fallback vulnerabilities are not strictly-speaking a Chip & PIN vulnerability
- However, vulnerabilities do exist with Chip & PIN
- To understand these, we need some more background information
- To pay, the customer inserts their smart card into a payment terminal
- The chip and terminal exchange information, fulfiling three goals:
  - Card authentication: that the card presented is genuine
  - Cardholder verification: that the customer presenting the card is the authorized cardholder
  - Transaction authorization: that the issuing bank accepts the transaction


### Simplified Chip & PIN transaction




2. PIN entered by customer

### The YES-card attack

- Criminals can copy EMV chip cards
- This fake card will contain the correct digital signature
- Also, it can be programmed to accept any PIN (hence "YES")
- However, the fake card can be detected by online transaction authorization



#### The YES-card attack



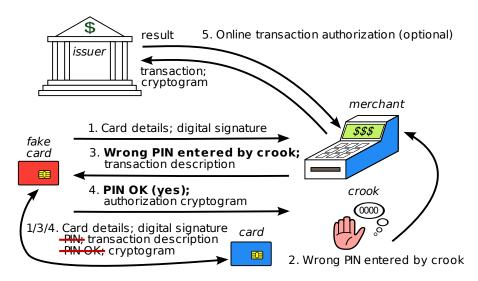
2. Wrong PIN entered by crook

## Defending against the YES-card

- YES-cards are responsible for a relatively small amount of fraud
- Can be detected by online transaction authorization
- Can also be detected by more advanced chip cards which can produce a dynamic digital signature
  - DDA (dynamic data authentication), as opposed to SDA (static data authentication)
  - Previously DDA cards were prohibitively expensive, but now cost about the same as SDA cards
- PIN verification can be performed online too, rather than allowing the card to do so
  - Need to securely send the PIN back to the issuer
  - UK ATMs use online PIN verification
  - UK point-of-sale terminals use offline PIN verification

### The no-PIN attack

- The no-PIN attack allows criminals to use a stolen card without knowing its PIN
- It requires inserting a device between the genuine card and payment terminal
- This attack works even for online transactions, and DDA cards




# BBC Newsnight filmed our demonstration for national TV



#### BBC Newsnight, BBC2, 11 February 2010

#### The no-PIN attack



## Current and proposed defences

- Skimming
  - iCVV: Slightly modifying copy of magnetic strip stored on chip
  - Disabling fallback: Preventing magnetic strip cards from being used in EMV-enabled terminals
  - Better control of terminals: Prevent skimmers from being installed
- YES-card
  - Dynamic Data Authentication (DDA): Place a public/private keypair on every card
  - Online authorization: Require that all transactions occur online
- No-PIN attack
  - Defences currently still being worked on
  - Extra consistency checks at issuer may be able to spot the attack
  - Combined DDA/Application Cryptogram Generation (CDA): Move public key authentication stage to the end

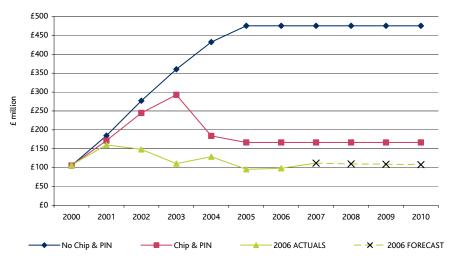
# Deployment of Chip and PIN

- Chip and PIN was expensive for both all parties
- Deployment was encouraged through "liability engineering"

|                                | Terminal                       |                              |                            |
|--------------------------------|--------------------------------|------------------------------|----------------------------|
| Card                           | magstrip                       | chip                         | chip & PIN                 |
| magstrip<br>chip<br>chip & PIN | lssuer<br>Acquirer<br>Acquirer | lssuer<br>Issuer<br>Acquirer | lssuer<br>Issuer<br>Issuer |

- Liability pushed down the chain: acquirer → merchant; issuer → customer
- · Led to rapid deployment, but this caused some problems
- Still took 10 years

## System glitches


- EMV is extremely complicated
- Difficult to make it work at all, let alone secure
- There have been many small glitches and incompatibilities
- A large one was when 20m German "EC" cards from Gemalto stopped working on January 1, 2010
- Fortunately, the magstrip still was on cards and could be used until a fix was found



### Was Chip and PIN worthwhile?

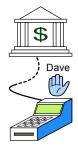
- Deploying Chip and PIN in the UK cost  $\pounds 1-2$  billion
- Was it worth it?
- Fraud went up
- But maybe, had Chip and PIN not been deployed, fraud would have gone up much more
- UK banks consider Chip and PIN a success
- We can never be certain whether they are correct
- Fraud figures are not the whole story: reduced value of stolen cards likely reduced violent crime

#### Counterfeit fraud in the UK



Source: UK Chip & PIN report (2007), APACS

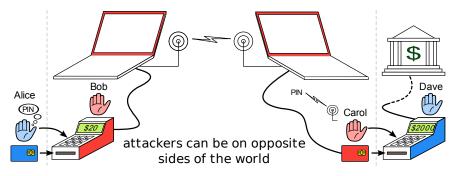
#### Effect on consumers


- There was some minor resistance to Chip and PIN
- After deployment, the question of liability became important
- Before Chip and PIN, banks generally refunded victims of fraud, because it was well known that magstrip cards could be cloned and signature forged
- After Chip and PIN, banks took the position that if the chip and PIN were used, the customer must have been negligent and hence liable (level of proof is low)
- The industry does not keep statistics, but a survey from the Consumer Association found that 20% of fraud victims do not get their money bank
- UK costs rules and regulatory regime makes fixing this difficult

## Options for deploying EMV in the US

- Do nothing: stay with magstrip cards
- Use full EMV suite
  - Complex, but has been done before
  - Would be prudent to avoid same mistakes (use iCVV, fix no-PIN vulnerability, use CDA or force online operation)
- Use simple EMV subset
  - Drop offline operation (massively simplifies system, avoids cost of building and running a PKI)
  - Dealing with the PIN is a more difficult choice
- Build something new
  - Use modern design principles and experience to build a better system (EMV is over 15 years old)
  - Probably more expensive in short term, but cheaper eventually

More: http://www.cl.cam.ac.uk/research/security/banking/


The relay attack: Alice thinks she is paying \$20, but is actually charged \$2000 for a purchase elsewhere





Honest cardholder Alice and merchant Dave are unwitting participants in the relay attack

The relay attack: Alice thinks she is paying \$20, but is actually charged \$2000 for a purchase elsewhere



Alice inserts her card into Bob's *fake* terminal, while Carol inserts a fake card into Dave's *real* terminal. Using wireless communication the \$2000 purchase is debited from Alice's account