Collusion in online competitions using covert channels

Inference Group Meeting 2 July 2003

Steven J. Murdoch

http://www.cl.cam.ac.uk/users/sjm217/

Security Group, Computer Laboratory, University of Cambridge

Collusion in online competitions using covert channels - p.1/17

Summary

- Connect-4 competition
- Advantages of collusion
- Multi Level Security
- Covert channels for authentication
- Choosing a collusion strategy
- Results

Introduction

- Collusion in games can give a significant advantage
- In Bridge partners should not be able to know the other's cards
 - Many rules on what is permitted
 - Hard to enforce, often policed on the instincts of experts
- In sports sometimes teams have colluded (normally against the rules)

Running example

- Rules of game like Connect-4
- However players can pass
- First stage of competition is a league
 - 2 points for a win, 1 point for a draw
- Top five go into a knockout stage
 - If there is a draw, CPU time and memory usage decide

Problem

- Because of passing rule no winning strategy exists
- However there is a fast drawing strategy (Piotr Zieliński)
- Solution: Enter multiple "drones", draw against everyone except one player, who will get more points

 Based on one of the techniques used by L. Victor Allis for the original Connect-4 game.

Authentication

- For collusion an authentication mechanism is needed
- Normally easy, but harder in programming competitions
- Low bandwidth 1 bit for simple case
- Must be high reliability
- Policy: Overt channels, such as sockets/IPC not permitted under competition rules

Multi Level Security (MLS)

- Bell-LaPadula policy used in military time sharing systems
- Risk of trojans being inserted at high privilege level
 - All data has a level, all programs have a level, all users have a clearance
 - No read up (program cannot read data with a higher level than itself)
 - No write down (program cannot write data with a lower level than itself)

Covert channels

- Channel which violates (write-down) security policy
- Timing Channels
 - CPU Load
 - Disk head scheduling
- Storage Channels
 - Process table exhaustion
 - Disk space

Covert channels in Connect-4

Standard covert channels can be used

Complicated, noisy
Uses CPU time

Move timing

Easier, less CPU time (sleep not counted)
Could be noisy

Moves as a covert channel 1

- For most strategies there is more than one equivalent move
- Till late in the game the outcome is undecided
- Use redundancy in move to send message
- Noise difficult to model
- So use (fast) PRNG to select move
- Linear congruential $X_{n+1} = (A * X_n + C) \mod Z$

Moves as a covert channel 2

- Receiver knows:
 - Move number
 - Alternative moves
 - Opponents choice if it was a "friend (by using same PRNG)
 - If previous moves matched expectation
- Winning player needs no detection system, both faster and less suspicious

Strategy 1

- For league stage, collusion works
- For knockout tournaments, it doesn't
 - Exception where order is known and cycle in graph of results

- So enter 5 players to win rather than 1
- Also have multiple classes, to give advantage to optimised programs
 - However the more classes the higher the risk of false positives
- Risk of very poor programs
 - Programs that try to win will win against the bad players more than our players (which almost always draw)

Results 1

Results 2

Name	Played	Won	Drew	Lost	Points	Class
Maleficent	84	58	26	0	142	0
NCC1703	84	58	26	0	142	0
Flounder	84	51	29	4	131	1
NCC1707	84	49	31	4	129	1
Ratigan	84	49	31	4	129	1
NCC1705	84	48	32	4	128	1
7 others	:	:	÷	:	88–99	
24 drones	:	:	÷	:	72–75	2
6 "rabbits"	:	:	÷	:	54–71	

•

۲

Results 3

۲

۲