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Wi-Fi data
collection

We collect Wi-Fi connection data
at this station to better

understand journey patterns
and improve your services.

We will not identify individuals.

You can opt out by turning off
your device’s Wi-Fi.
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TfL monitor wifi MAC
addresses to track mobility

Steven Murdoch @sjmurdoch - Jul 15 v
My issues are that the poster implies there’s an opt-out when it isn’t really and
' also there would be privacy-preserving ways to achieve the same goal
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Replying to @sjmurdoch @futureidentity and 5 others

You can turn off your WiFi, though as Michael
points out, it's less quick if you've got a
laptop in your bag. But seriously, this is a
good project. It's less perfectly implemented
than some might like, but it's data for good.
Not all data collection is terrible.

9:02 AM - 15 Jul 2019
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Ticketing data doesn’t explain
movements In stations
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We can simulate wifi observations
In a station based on user profiles
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Analysis of 64 bit MAC
addresses gives good results

e Poisson arrival
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Truncated 16 bit MACs
don’t work as well
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Vida: Bayesian inference to de-anonymize communications 5
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Fig. 1. The generative model used for Bayesian inference in anonymous communica-
tions.

We start by proposing a ‘forward’ generative model describing how messages
are cenerated and <ent throuiech the anonvmitv svetem. We then 11se Baves rule
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m Obl I Ity prOfI Ies fro m Fig. 1. The generative model used for Bayesian inference in anonymous communica-
tions.
observations of anonymised
We start by proposing a ‘forward’ generative model describing how messages
M AC add re s Se S are generated and sent through the anonymity system. We then use Bayes rule

to ‘invert’ the problem and perform inference on the unknown quantities. The
broad outline of the generative model is depicted in Figure 1.
An anonymity system is abstracted as containing Ny, users that send Ny,g,
messages to each other. Each user is associated with a sending profile ¥, describ-
LN o ing how they select their correspondents when sending a message. We assume,
® M Od el Wlfl n etWO rk and MAC in this work, that those profiles are simple multinomial distributions, that are
sampled independently when a message is to be sent to determine the receiver.
add reSS ano nym iza‘tiOn aS a m iX We denote the collection of all sending profiles by ¥ = {¥,|x = 1... Nyser }-
A given sequence of Ny senders out of the Nyger users of the system, de-

noted by Sen, ..., Seny,,,, send a message while we observe the system. Using

n etWO rk their sending profiles a corresponding sequence of receivers Recy, ..., Recy,,, is
selected to receive their messages. The probability of any receiver sequence is
easy to compute. We denote this matching between senders and receivers as M:

PrM|?] = H Pr[Sen, — Rec,|¥,].

e Take Into account reasonable ]

In parallel with the matching process where users choose their communication
ri O r b el i efs Of m O bi | i-t att ern S partners, an anonymity system A is used. This anonymity system is abstracted
p y p as a bipartite graph linking input messages ¢,, with potential output messages
oy, regardless of the identity of their senders and receivers. We note that com-
pleteness of the bipartite graph is not required by the model. The edges of the
bipartite graph are weighted with w;, that is simply the probability of the input
message i, being output as o,: wy, = Prli, — o,|Al.
This anonymity system A is used to determine a particular assignment of
messages according to the weights w,,,. A single perfect matching on the bipartite



UCL InfoSec are hiring!

Post-docs, PhD students, ...

New UK cybersecurity centre for doctoral
training (CDT) — 55+ PhD studentships
over the next 8 years between Computer
Science, Crime Science and Public Policy
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