
Hardened Stateless Session Cookies

http://xkcd.com/327/

Steven J. Murdoch
www.cl.cam.ac.uk/users/sjm217

Computer Laboratory

www.torproject.org

Sixteenth International Workshop on Security Protocols, 16–18 April 2008, Cambridge, UK

http://xkcd.com/327/
http://www.cl.cam.ac.uk/users/sjm217/

Why I am interested in web security

Found on www.lightbluetouchpaper.org

http://www.lightbluetouchpaper.org/

How users authenticate to a website

Login:
Client→ Server <username, password>

Server Checks username and password
against database

Server→ Client cookie

Page request:
Client→ Server <request, cookie>

Server Checks cookie

Cookie allows a site to know which user makes a page request. The
site can then give access to restricted information, track who makes
changes etc. . .

What goes into the cookie

Database state
Cookie Per-user Per-session

PHP Session ID f (pw) Session ID→ User ID
Wordpress H(H(pw)) H(pw) —

Fu et al. User ID, MAC f (pw) —

Per-session state should be avoided as it increases storage
requirements, load balancing complication and DoS vulnerability

Problem:
With read-access to the database, an attacker can generate a fake
cookie

Solution:
Store something in the cookie which can be verified but not spoofed
by the server

SQL injection

This SQL statement (based on an example in Wordpress) is
vulnerable to SQL injection because $user login is not properly
sanitized:
SELECT * FROM wp users WHERE user login =
'$user login'

An attacker can exploit this vulnerability by setting $user login to be:
' UNION ALL SELECT 1,2,user pass,4,5,6,7,8,9,10
FROM wp users WHERE ID=1/*

An attacker can inject arbitrary SQL after the vulnerable variable, and
can terminate the statement. However, the PHP MySQL API only
allows one statement per request

What to do if your website is vulnerable
to SQL injection

Give up?

Once you’ve got read-only access to a database, how
much more vulnerable do you want? — “Computer Guru”

As has already been noted, if an attacker already has
read access to your database, then you’ve probably lost the
battle, regardless of anything else. — “dougal”

What to do if your website is vulnerable
to SQL injection

Give up?

Once you’ve got read-only access to a database, how
much more vulnerable do you want? — “Computer Guru”

As has already been noted, if an attacker already has
read access to your database, then you’ve probably lost the
battle, regardless of anything else. — “dougal”

Defence in depth?
We’ve lost the battle, but can we win the war? The attacker can’t
change the statement type so if the exploitable query is SELECT, the
attacker can read, but not write

This model of attacker can still break all the previous authentication
schemes, so can we do better?

A new cookie proposal (simplified)

Server stores: <User ID, s =salt, v =H(A(s, password))>.
Where: H() is a hash function; A() is password salting function

Login:
Client→ Server <username, password>

Server Checks if H(A(s, password))= v
Server→ Client Cookie c =A(s, password)

Page request:
Client→ Server <request, cookie c>

Server Checks if H(c)= v

Potential attacks:
Read cookie: can’t go from c on client to password (without s)
Read database: can’t go from < v , s >, to c (unless password is
weak)

Can we do any better? Are there any other attacks?

