
CTSRDCRASH-worthy 
Trustworthy

Systems 
Research and 
Development

CTSRD

CHERI: a research platform deconflating 
hardware virtualization and protection

Robert N.M. Watson, Peter G. Neumann
Jonathan Woodruff, Jonathan Anderson, Ross Anderson

Nirav Dave, Ben Laurie, Simon W. Moore, Steven J. Murdoch
Robert Norton, Philip Paeps, Michael Roe, Hassen Saidi

RESoLVE’12
London, UK

2 March 2012

Approved for public release. This research is sponsored by the Defense Advanced Research Projects 
Agency (DARPA) and the Air Force Research Laboratory (AFRL), under contract FA8750-10-C-0237. 
The views, opinions, and/or findings contained in this article/presentation are those of the author/
presenter and should not be interpreted as representing the official views or policies, either expressed 
or implied, of the Defense Advanced Research Projects Agency or the Department of Defense.



CTSRD
CTSRD

OS kernel
OS microkernel

bash emacs

VFS

...

Net ...

...bash emacsVFS Net1980’s

2

From microkernels to 
compartmentalisation



CTSRD
CTSRD

OS kernel
OS microkernel

bash emacs

VFS

...

Net ...

...bash emacsVFS Net1980’s

sshd

crypto/
compress

SSH
session

sshd

SSH 
session

crypto/
compress

OS kernel OS kernel

... ...2000’s

2

From microkernels to 
compartmentalisation



CTSRD
CTSRD

OS kernel
OS microkernel

bash emacs

VFS

...

Net ...

...bash emacsVFS Net1980’s

sshd

crypto/
compress

SSH
session

sshd

SSH 
session

crypto/
compress

OS kernel OS kernel

... ...2000’s

2

Why is 
it catching on 

this time?

From microkernels to 
compartmentalisation



CTSRD
CTSRD

OS kernel
OS microkernel

bash emacs

VFS

...

Net ...

...bash emacsVFS Net1980’s

sshd

crypto/
compress

SSH
session

sshd

SSH 
session

crypto/
compress

OS kernel OS kernel

... ...2000’s

2

Why is 
it catching on 

this time?

From microkernels to 
compartmentalisation

Will the same barriers 
recur as we go beyond 

coarse-grained 
compartmentalisation?



CTSRD
CTSRD

3

Capsicum
• Capsicum hybrid capability model: incremental adoption 

strategy

• Run current applications, selectively deploy capabilities 
in TCB, vulnerable libraries and applications

• Short-term benefits, long-term vision

• Software implementation of the principle of least 
privilege is neither easily nor efficiently represented in 
current hardware

• C-language kernels and language runtimes (TCBs) are 
enormous and unsound -- but amazingly persistent

• Software TCB implementations embody artefacts of 
security policies rather than design principles



CTSRD
CTSRD

4

DARPA CRASH

If you could revise the fundamental principles of
computer system design to improve security…

…what would you change?



CTSRD
CTSRD

What has changed since current CPU 
protection models were developed?

• Trend towards exposing inherent hardware 
parallelism to the programmer: software context 
switching can now be avoided

• Mature translations from type-safe language to 
expression-limited byte codes, e.g., Java, CLR 
— security not assured, but at least possible

• Pressing security motivation for fine-grained 
software compartmentalisation

• New opportunities for hardware-software research 
created by FPGA soft cores, open source 
software and mobile computing platforms

5



CTSRD
CTSRD

6

CHERI MIPS
• Transpose ideas from Capsicum into CPUs

• Capability hardware enhanced RISC instructions

• Deconflate virtualisation and protection

• Add fine-grained in-address space protection…
… but retain the MMU to support VMs and processes

• Hybrid capability model: current OS, applications

• Experiment with C-language TCBs, vulnerable libraries

• FreeBSD, LLVM, Apache, Chromium, …

• Experimental questions: hardware or software 
enforcement? Nature and expression of protection?



CTSRD
CTSRD

7

CHERI software architecture

Hybrid code blending general-purpose registers and capabilities

Legacy application code compiled for general-purpose registers

Per-address space memory management and capability executive

High-assurance capability-only code; stand-alone or "pools of capabilities"

Capsicum
kernel

Kernel address space executive

Device
drivers

Network
stack

Chromium
web 

browser

Java
Script

Separation kernel

C++ RT

MirageOS:
provable
OCaml

application 
+ kernel

stack
libc executive libc executive

CHERI

OCaml runtime

In
de

pe
nd

en
t c

ap
ab

ilit
y 

do
m

ai
ns

Separation kernel executive

Classic
UNIX

application

OCaml runtime

OCaml
application

stack

zlib

Capsicum
kernel

Kernel VM and allocator

Network
stack

Xen hypervisor

libc malloc

Commodity CPU

Vi
rtu

al
 a

dd
re

ss
 s

pa
ce

s 
su

pp
or

te
d 

by
 p

ag
ed

 V
M

Classic
UNIX

application

zlib

Chromium
web 

browser

Java
Script

C++ RT
OCaml runtime

OCaml
application

stack

libc malloc libc malloc

Device
drivers



CTSRD
CTSRD

7

CHERI software architecture

Hybrid code blending general-purpose registers and capabilities

Legacy application code compiled for general-purpose registers

Per-address space memory management and capability executive

High-assurance capability-only code; stand-alone or "pools of capabilities"

Capsicum
kernel

Kernel address space executive

Device
drivers

Network
stack

Chromium
web 

browser

Java
Script

Separation kernel

C++ RT

MirageOS:
provable
OCaml

application 
+ kernel

stack
libc executive libc executive

CHERI

OCaml runtime

In
de

pe
nd

en
t c

ap
ab

ilit
y 

do
m

ai
ns

Separation kernel executive

Classic
UNIX

application

OCaml runtime

OCaml
application

stack

zlib

Capsicum
kernel

Kernel VM and allocator

Network
stack

Xen hypervisor

libc malloc

Commodity CPU

Vi
rtu

al
 a

dd
re

ss
 s

pa
ce

s 
su

pp
or

te
d 

by
 p

ag
ed

 V
M

Classic
UNIX

application

zlib

Chromium
web 

browser

Java
Script

C++ RT
OCaml runtime

OCaml
application

stack

libc malloc libc malloc

Device
drivers

Hybrid capability 
approaches within the 
Capsicum OS kernel

E.g., Use in network stack 
or device drivers but 

not file system.



CTSRD
CTSRD

7

CHERI software architecture

Hybrid code blending general-purpose registers and capabilities

Legacy application code compiled for general-purpose registers

Per-address space memory management and capability executive

High-assurance capability-only code; stand-alone or "pools of capabilities"

Capsicum
kernel

Kernel address space executive

Device
drivers

Network
stack

Chromium
web 

browser

Java
Script

Separation kernel

C++ RT

MirageOS:
provable
OCaml

application 
+ kernel

stack
libc executive libc executive

CHERI

OCaml runtime

In
de

pe
nd

en
t c

ap
ab

ilit
y 

do
m

ai
ns

Separation kernel executive

Classic
UNIX

application

OCaml runtime

OCaml
application

stack

zlib

Capsicum
kernel

Kernel VM and allocator

Network
stack

Xen hypervisor

libc malloc

Commodity CPU

Vi
rtu

al
 a

dd
re

ss
 s

pa
ce

s 
su

pp
or

te
d 

by
 p

ag
ed

 V
M

Classic
UNIX

application

zlib

Chromium
web 

browser

Java
Script

C++ RT
OCaml runtime

OCaml
application

stack

libc malloc libc malloc

Device
drivers

Hybrid capability 
approaches within the 
Capsicum OS kernel

E.g., Use in network stack 
or device drivers but 

not file system.

The separation kernel 
will support both MMU 

separation from guests and 
capability interfaces to pure 

capability guests.



CTSRD
CTSRD

7

CHERI software architecture

Hybrid code blending general-purpose registers and capabilities

Legacy application code compiled for general-purpose registers

Per-address space memory management and capability executive

High-assurance capability-only code; stand-alone or "pools of capabilities"

Capsicum
kernel

Kernel address space executive

Device
drivers

Network
stack

Chromium
web 

browser

Java
Script

Separation kernel

C++ RT

MirageOS:
provable
OCaml

application 
+ kernel

stack
libc executive libc executive

CHERI

OCaml runtime

In
de

pe
nd

en
t c

ap
ab

ilit
y 

do
m

ai
ns

Separation kernel executive

Classic
UNIX

application

OCaml runtime

OCaml
application

stack

zlib

Capsicum
kernel

Kernel VM and allocator

Network
stack

Xen hypervisor

libc malloc

Commodity CPU

Vi
rtu

al
 a

dd
re

ss
 s

pa
ce

s 
su

pp
or

te
d 

by
 p

ag
ed

 V
M

Classic
UNIX

application

zlib

Chromium
web 

browser

Java
Script

C++ RT
OCaml runtime

OCaml
application

stack

libc malloc libc malloc

Device
drivers

Hybrid applications, 
capability-aware libraries, JIT, ...

Hybrid capability 
approaches within the 
Capsicum OS kernel

E.g., Use in network stack 
or device drivers but 

not file system.

The separation kernel 
will support both MMU 

separation from guests and 
capability interfaces to pure 

capability guests.



CTSRD
CTSRD

7

CHERI software architecture

Hybrid code blending general-purpose registers and capabilities

Legacy application code compiled for general-purpose registers

Per-address space memory management and capability executive

High-assurance capability-only code; stand-alone or "pools of capabilities"

Capsicum
kernel

Kernel address space executive

Device
drivers

Network
stack

Chromium
web 

browser

Java
Script

Separation kernel

C++ RT

MirageOS:
provable
OCaml

application 
+ kernel

stack
libc executive libc executive

CHERI

OCaml runtime

In
de

pe
nd

en
t c

ap
ab

ilit
y 

do
m

ai
ns

Separation kernel executive

Classic
UNIX

application

OCaml runtime

OCaml
application

stack

zlib

Capsicum
kernel

Kernel VM and allocator

Network
stack

Xen hypervisor

libc malloc

Commodity CPU

Vi
rtu

al
 a

dd
re

ss
 s

pa
ce

s 
su

pp
or

te
d 

by
 p

ag
ed

 V
M

Classic
UNIX

application

zlib

Chromium
web 

browser

Java
Script

C++ RT
OCaml runtime

OCaml
application

stack

libc malloc libc malloc

Device
drivers

Hybrid applications, 
capability-aware libraries, JIT, ...

Per-address space executive 
blends memory and capability 
management, IPC links to other 

rings and processes

Hybrid capability 
approaches within the 
Capsicum OS kernel

E.g., Use in network stack 
or device drivers but 

not file system.

The separation kernel 
will support both MMU 

separation from guests and 
capability interfaces to pure 

capability guests.



CTSRD
CTSRD

CHERI CPU architecture

8

Instruction
Fetch

Register 
Fetch Decode Execute Memory

Access

Capability Coprocessor

Instruction
Cache MMU: TLB Data

Cache

Memory

Control Coprocessor

Register File

• Capability coprocessor

• Capability registers supplement 
general-purpose registers

• Describe segments, objects

• Compiler-managed

• Unprivileged access

• “Fat pointers”

• Hybrid operation transforms 
general-purpose memory 
accesses

• Object capabilities employ in-
development call-gate facility



CTSRD
CTSRD

CHERI CPU architecture

8

Instruction
Fetch

Register 
Fetch Decode Execute Memory

Access

Capability Coprocessor

Instruction
Cache MMU: TLB Data

Cache

Memory

Control Coprocessor

Register File

• Capability coprocessor

• Capability registers supplement 
general-purpose registers

• Describe segments, objects

• Compiler-managed

• Unprivileged access

• “Fat pointers”

• Hybrid operation transforms 
general-purpose memory 
accesses

• Object capabilities employ in-
development call-gate facility

Most of these details 
don’t [yet] matter.

They become parameters 
for future experiments.



CTSRD
CTSRD

9

So, you want to do research into the
hardware software interface…

…where do you begin?



CTSRD
CTSRD

The hardware-software
interface research problem

• Hardware, software, and network protocol researchers work 
in largely independent silos

• Treat each others’ corpuses as constants for experiments

• But we want to answer multi-variable research questions:

➡What happens as we vary both TLB size and OS strategy?

➡Was conflation of CPU memory virtualisation and memory 
protection a mistake?

➡What are the interactions of energy efficiency optimisation 
across both hardware and software?

➡How can a “portable” operating system message passing 
semantic span a variety of hardware semantics?

10



CTSRD
CTSRD

BERI
Bluespec Extensible RISC Instructions

11

Complete hardware-software research platform

Apache/BSD-licensed from top to bottom

Apache

FreeBSD

Hypervisor
Xen/MIPS?

BERI

clang/LLVM, BSD ELF tools

Reference applications

Reference compiler/toolchain

Reference operating system

Reference hypervisor

Hardware research stack

X.org ChromiumPostgres

C simulation FPGA synthesis
tPad / DE4 / NetFPGA10G

Hardware simulation/
implementation substrates ...

...



CTSRD
CTSRD

12

BERI status
• 16 months in

• Soft single-core 64-bit MIPS processor

• Terasic DE-4, tPad: - Altera FPGA + certain peripherals

• Uboot boot loader, research Deimos microkernel

• In progress

• FreeBSD adaptation -- creeping up on single-user mode

• 64-bit MIPS LLVM backend

• First research project: CPU capability protection model

• Now starting on...

• Multithreading, multicore

• Rackscale memory interconnects

• Port to NetFPGA 10G platform

Unusual OS port 
perspective: fix 

hardware rather than 
work around in 

software!



CTSRD
CTSRD

Immediate research applications

• Revisit historic RISC assumptions

• Hardware cache strategies vs. OS scheduling

• Exploiting memory locality information for hardware 
thread thread scheduling

• How should operating systems “portably” span 
multiple hardware message passing semantics

• Does fine-grained protection belong in hardware or 
software?

• Virtualisation vs. protection

13



CTSRD
CTSRD

CHERI status
• Fleshing out ISA test suite, pipeline fuzzer, etc.

• New “cheri2” in flight to support formal methods

• CHERI adaptations to OS, toolchain

• FreeBSD port mid-stride

• LLVM work beginning

• Developing ABIs, application models

• Pondering C language extensions, pilot components/applications

• Preparing to enter experimental phase

• Side-by-side hardware and software implementations of semantics

• Comparisons between conventional and capability-based models

14



CTSRD
CTSRD

Collaborative project
Cambridge

Architecture: Jonathan Woodruff, Simon Moore, Greg 
Chadwick, Alan Mujumdar, Robert Norton, Wojciech Koszek

Security: Jon Anderson, Ross Anderson, Ben Laurie, Steven 
Murdoch, Philip Paeps, Michael Roe, Ilias Marinos

NetOS: Anil Madhavapeddy, Andrew Moore, Steven Hand, 
Muhammad Shahbaz, Will Morland

SRI

Systems, Formal Methods: Peter Neumann, Nirav 
Dave, Hassen Saidi, Rance DeLong, John Rushby, Pat Lincoln, 
Natarajan Shankar

15



CTSRD
CTSRD

Conclusion

16

• Four-year “cross-disciplinary” collaborative project

• BERI: Bluespec experimental RISC implementation

• Research platform for the hardware-software interface

• CHERI: Capability hardware enhanced RISC instructions

• Have we undesirably conflated protection and 
virtualisation?

• Does fine-grained protection belong in hardware or 
software?

• Support from DARPA, Google

• http://www.cl.cam.ac.uk/research/security/ctsrd/

http://www.cl.cam.ac.uk/research/security/ctsrd/
http://www.cl.cam.ac.uk/research/security/ctsrd/

