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Capsicum
• Capsicum hybrid capability model: incremental adoption 

strategy

• Run current applications, selectively deploy capabilities 
in TCB, vulnerable libraries and applications

• Short-term benefits, long-term vision

• Software implementation of the principle of least 
privilege is neither easily nor efficiently represented in 
current hardware

• C-language kernels and language runtimes (TCBs) are 
enormous and unsound -- but amazingly persistent

• Software TCB implementations embody artefacts of 
security policies rather than design principles
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DARPA CRASH

If you could revise the fundamental principles of
computer system design to improve security…

…what would you change?
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What has changed since current CPU 
protection models were developed?

• Trend towards exposing inherent hardware 
parallelism to the programmer: software context 
switching can now be avoided

• Mature translations from type-safe language to 
expression-limited byte codes, e.g., Java, CLR 
— security not assured, but at least possible

• Pressing security motivation for fine-grained 
software compartmentalisation

• New opportunities for hardware-software research 
created by FPGA soft cores, open source 
software and mobile computing platforms

5
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CHERI MIPS
• Transpose ideas from Capsicum into CPUs

• Capability hardware enhanced RISC instructions

• Deconflate virtualisation and protection

• Add fine-grained in-address space protection…
… but retain the MMU to support VMs and processes

• Hybrid capability model: current OS, applications

• Experiment with C-language TCBs, vulnerable libraries

• FreeBSD, LLVM, Apache, Chromium, …

• Experimental questions: hardware or software 
enforcement? Nature and expression of protection?
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CHERI software architecture
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CHERI CPU architecture
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• Capability registers supplement 
general-purpose registers
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• Unprivileged access

• “Fat pointers”

• Hybrid operation transforms 
general-purpose memory 
accesses

• Object capabilities employ in-
development call-gate facility
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Most of these details 
don’t [yet] matter.

They become parameters 
for future experiments.
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So, you want to do research into the
hardware software interface…

…where do you begin?
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The hardware-software
interface research problem

• Hardware, software, and network protocol researchers work 
in largely independent silos

• Treat each others’ corpuses as constants for experiments

• But we want to answer multi-variable research questions:

➡What happens as we vary both TLB size and OS strategy?

➡Was conflation of CPU memory virtualisation and memory 
protection a mistake?

➡What are the interactions of energy efficiency optimisation 
across both hardware and software?

➡How can a “portable” operating system message passing 
semantic span a variety of hardware semantics?

10
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BERI
Bluespec Extensible RISC Instructions
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Complete hardware-software research platform

Apache/BSD-licensed from top to bottom

Apache

FreeBSD

Hypervisor
Xen/MIPS?

BERI

clang/LLVM, BSD ELF tools

Reference applications

Reference compiler/toolchain

Reference operating system

Reference hypervisor

Hardware research stack

X.org ChromiumPostgres

C simulation FPGA synthesis
tPad / DE4 / NetFPGA10G

Hardware simulation/
implementation substrates ...

...
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BERI status
• 16 months in

• Soft single-core 64-bit MIPS processor

• Terasic DE-4, tPad: - Altera FPGA + certain peripherals

• Uboot boot loader, research Deimos microkernel

• In progress

• FreeBSD adaptation -- creeping up on single-user mode

• 64-bit MIPS LLVM backend

• First research project: CPU capability protection model

• Now starting on...

• Multithreading, multicore

• Rackscale memory interconnects

• Port to NetFPGA 10G platform

Unusual OS port 
perspective: fix 

hardware rather than 
work around in 

software!
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Immediate research applications

• Revisit historic RISC assumptions

• Hardware cache strategies vs. OS scheduling

• Exploiting memory locality information for hardware 
thread thread scheduling

• How should operating systems “portably” span 
multiple hardware message passing semantics

• Does fine-grained protection belong in hardware or 
software?

• Virtualisation vs. protection

13
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CHERI status
• Fleshing out ISA test suite, pipeline fuzzer, etc.

• New “cheri2” in flight to support formal methods

• CHERI adaptations to OS, toolchain

• FreeBSD port mid-stride

• LLVM work beginning

• Developing ABIs, application models

• Pondering C language extensions, pilot components/applications

• Preparing to enter experimental phase

• Side-by-side hardware and software implementations of semantics

• Comparisons between conventional and capability-based models

14
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Collaborative project
Cambridge

Architecture: Jonathan Woodruff, Simon Moore, Greg 
Chadwick, Alan Mujumdar, Robert Norton, Wojciech Koszek

Security: Jon Anderson, Ross Anderson, Ben Laurie, Steven 
Murdoch, Philip Paeps, Michael Roe, Ilias Marinos

NetOS: Anil Madhavapeddy, Andrew Moore, Steven Hand, 
Muhammad Shahbaz, Will Morland

SRI

Systems, Formal Methods: Peter Neumann, Nirav 
Dave, Hassen Saidi, Rance DeLong, John Rushby, Pat Lincoln, 
Natarajan Shankar

15
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Conclusion
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• Four-year “cross-disciplinary” collaborative project

• BERI: Bluespec experimental RISC implementation

• Research platform for the hardware-software interface

• CHERI: Capability hardware enhanced RISC instructions

• Have we undesirably conflated protection and 
virtualisation?

• Does fine-grained protection belong in hardware or 
software?

• Support from DARPA, Google

• http://www.cl.cam.ac.uk/research/security/ctsrd/

http://www.cl.cam.ac.uk/research/security/ctsrd/
http://www.cl.cam.ac.uk/research/security/ctsrd/

