
Evidence-critical systems: what they 
are and why we need them

Steven J. Murdoch 
University College London

murdoch.is/:/shb20

Get these slides here

https://murdoch.is/talks/shb20evidence.pdf


Computers are limited to enforcing policies that can be 
unambiguously expressed in code

• If you want to a computer to require actions meet certain 
criteria, the actions and criteria must be precisely described in 
a programming language, e.g. 

• “Only people who know this password can read this 
confidential file” 

• “Within 1 second of overheating the nuclear reactor must 
be shut down” 

• Computers are not so good when human interpretation is 
required to enforce policies 

• “Data must be disclosed if and only if it is necessary and 
proportionate to do so”

murdoch.is/:/shb20

https://murdoch.is/talks/shb20evidence.pdf


Transparency can help detect violations of the ambiguous 
policy, but only if victims have power to do so

• One option: let anything happen and trust people to act in a 
trustworthy way 

• We can do better: transparency enhancing technologies 
enforce that actions are visible, so failures can be identified 
using audit logs 

• One challenge is how to allow the public to audit logs of 
actions that are cannot be made public 

• VAMS does this by allowing statistics to be verified 
without having access to underlying data 

• Transparency doesn’t necessary imply agency

murdoch.is/:/shb20

https://arxiv.org/pdf/1805.04772.pdf
https://murdoch.is/talks/shb20evidence.pdf


What’s the right process to turn verifiable data into fair 
outcomes for users of the system?

• The legal system is the way we usually turn evidence into 
justice, but it’s imperfect and has proved particularly 
problematic where computers are used 

• Consider the prosecutions of 900+ subpostmasters on the 
basis of evidence generated by the Horizon accounting 
system finally shown to be not “remotely robust” 

• Part of the problem is that the English legal system presumes 
that computers are reliable unless shown otherwise 

• Obtaining evidence that a computer is unreliable is 
expensive and may be infeasible, particularly for users

murdoch.is/:/shb20

https://murdoch.is/papers/protocols19transparency.pdf
https://doi.org/10.14296/deeslr.v17i0.5143
https://murdoch.is/talks/shb20evidence.pdf


Bad news: it’s hard; good news: it’s easier than building 
safety critical code

• High assurance engineering is expensive even for the simplest 
applications of computers so could be argued as unrealistic 
for all legally relevant computer systems 

• Actually it’s not so bad: safety critical systems must produce 
correct and timely responses 

• Evidence-critical systems need only to never produce an 
undetectable incorrect response 

• It’s OK to fail to produce a response 

• It’s OK if an incorrect response can be detected

murdoch.is/:/shb20

https://murdoch.is/talks/shb20evidence.pdf


• What are the right technologies and design principles to build systems that will produce 
adequate evidence to fairly resolve disputes? 

• What are the right criteria to evaluate the likelihood of a failure being detected 

• To know the likelihood that a failure occurred given some evidence, we need to know 
how likely is it to see the evidence, assuming a failure has occurred (Bayes’ law) 

• i.e. based on the system design, what is the likelihood of an undetected failure? 

• How do we create incentives to ensure that systems are built to these criteria 

More discussions on this topic – www.benthamsgaze.org 

How can we design and build evidence-critical systems?

murdoch.is/:/shb20

http://www.benthamsgaze.org
https://murdoch.is/talks/shb20evidence.pdf

