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Security Protocols

• Security protocols are the intellectual core 
of security engineering

• They are where cryptography and system 
mechanisms meet

• They allow trust to be taken from where it 
exists to where it’s needed

• But they are much older then computers…



Real-world protocol

• Ordering wine in a restaurant
– Sommelier presents wine list to host 
– Host chooses wine; sommelier fetches it
– Host samples wine; then it’s served to guests

• Security properties
– Confidentiality – of price from guests
– Integrity – can’t substitute a cheaper wine
– Non-repudiation – host can’t falsely complain



Car unlocking protocols
• Principals are the engine controller E and the car key 

transponder T
• Static (T → E: KT)
• Non-interactive

T → E: T, {T,N}KT

• Interactive
E → T: N
T → E: {T,N }KT

• N is a ‘nonce’ for ‘number used once’. It can be a 
serial number, random number or a timestamp



What goes wrong
• In cheap devices, N may be random or a counter – 

one-way comms and no clock
• It can be too short, and wrap around
• If it’s random, how many do you remember? (the valet 

attack)
• Counters and timestamps can lose sync leading to DoS 

attacks
• There are also weak ciphers – Eli Biham’s 2008 attack 

on the Keeloq cipher (216 chosen challenges then 500 
CPU days’ analysis – some other vendors authenticate 
challenges)



Two-factor authentication

S → U: N
U → P: N, PIN
P → U: {N, PIN}KP



Identify Friend or Foe (IFF)

• Basic idea: fighter challenges bomber
F → B: N

B → F: {N}K

• But what if the bomber reflects the challenge back at 
the fighter’s wingman?
F → B: N

B → F: N

F → B: {N}K

B → F: {N}K



IFF (2)

 



IFF (3)

• The middleman attack is very general – Conway 
discussed how to beat a grandmaster at postal 
chess

• The fix for the man-in-the-middle attack is often 
application specific

• E.g. NATO mode 12 IFF: 32 bit encrypted 
challenge (to prevent enemy using IFF to locate 
beyond radar range) at rate of 250 per second



Offline PIN Problem, 1993

• IBM system for ATMs:
PIN = {PAN}KP

• Offline operation: write {PIN}KA to the card 
track and give KA to all ATMs

• What’s wrong with this? (the crooks found 
out in 1993 and offline operations had to be 
suspended)



Chip Authentication Program (CAP)

• Introduced by UK banks to stop phishing
• Each customer has an EMV chipcard 
• Easy mode:

U → C: PIN

C → U: {N, PIN}KC 

• Serious mode: 
U → C: PIN, amt, last 8 digits of payee A/C…



CAP (2)

 



What goes wrong…

 



SWIFT



Key Management Protocols

• HomePlug AV has maybe the simplest…
• Secure mode: type the device key KD from 

the device label into the network hub. Then
H → D: {KM}KD 

• Simple-connect mode: hub sends a device 
key in the clear to the device, and user 
confirms whether it’s working

• Optimised for usability, low support cost



Key management protocols (2)

• Suppose Alice and Bob share a key with 
Sam, and want to communicate?
– Alice calls Sam and asks for a key for Bob
– Sam sends Alice a key encrypted in a blob only 

she can read, and the same key also encrypted 
in another blob only Bob can read

– Alice calls Bob and sends him the second blob

• How can they check the protocol’s fresh?



Key management protocols (2)

• Here’s a possible protocol
A → S: A, B

S → A: {A, B, KAB,T}KAS, {A, B, KAB,T}KBS

A → B: {A, B, KAB,T}KBS

• She finally sends him whatever message 
she wanted to send, encrypted under KAB

A → B: {M}KAB



A Quick Test

• The following protocol was proposed by 
Woo and Lam for logon authentication
A → B: A
B → A: NB
A → B: {NB}KAS

B → S: {A, {NB}KAS}KBS

S → B: {NB}KBS

• Is it OK?



Needham-Schroder

• 1978: uses nonces rather than timestamps
A → S: A, B, NA

S → A: {NA, B, KAB,{KAB, A} KBS}KAS

A → B: {KAB, A}KBS

B → A: {NB}KAB

A → B: {NB - 1}KAB

• The bug, and the controversy…



Otway-Rees

• Proposed fix for NS – also allows nested RPCs
A → B: M A, B, {NA,M,A,B}KAS

B → S: M A, B, {NA,M,A,B}KAS,{NB,M,A,B}KBS

S → B: M, {NA, KAB}KAS,{NB, KAB}KBS

B → A: {NA, KAB}KAS

• Passes formal verification…
• But can still break with poor implementation (e.g. 

if you use CBC encryption with block boundaries 
aligned with the protocol element boundaries)



Kerberos

• The ‘revised version’ of Needham-Schroder 
– nonces replaced by timestamps
A → S: A, B
S → A: {TS, L, KAB, B,{TS, L, KAB, A}KBS}KAS

A → B: {TS, L, KAB, A}KBS, {A, TA}KAB

B → A: {A, TA}KAB

• Now we have to worry about clock sync!
• Kerberos variants very widely used…



GSM

• Each handset SIM has an individual key Ki
• Home network sends visited network 

(RAND, SRES, Kc) where (SRES | Kc) = 
{RAND}Ki

• Handset → Network: IMSI
• Network → Handset: RAND
• Handset → Network: SRES, {traffic}Kc

• Attacks?



3g

• 3g (UMTS) protocol fixes the weak ciphers and 
vulnerability to rogue base stations

• {RAND}K = (RES|CK|IK|AK), giving keys for 
confidentiality, integrity and anonymity
USIM → HE: IMSI

HE → VLR: RAND,RES,CK,IK, SEQ⊕AK, MAC

VLR → USIM: RAND, SEQ⊕AK, MAC

USIM→ VLR: RES



Formal methods

• Many protocol errors result from using the wrong 
key or not checking freshness

• Formal methods used to check all this!
• The core of the Burrows-Abadi-Needham logic:

– M is true if A is an authority on M and A believes M
– A believes M if A once said M and M is fresh
– B believes A once said X if he sees X encrypted under 

a key B shares with A

• See book chapter 3 for a worked example



Another Quick Test

• In the ‘wide-mouthed frog’ protocol – Alice 
and Bob each share a key with Sam, and 
use him as a key-translation service

   A  → S: {TA, B, KAB}KAS

   S  → B: {TS, A, KAB}KBS

• Is this protocol sound, or not?



What is a Security API ?
• An API that allows users to work with sensitive 

data and keys, and uses cryptography to enforce 
a policy on the usage of data

Host
PC or Mainframe

Security Module
PCI Card or Separate Module

Security API

VDU

I/O Devs

Network



Hardware Security Modules

• An instantiation of a security API
• Often physically tamper-resistant

(epoxy potting, temperature & x-ray sensors)

• May have hardware crypto acceleration
(not so important with speed of modern PC)

• May have special ‘trusted’ peripherals
(key switches, smartcard readers, key pads)

(referred to as HSMs subsequently)



Hardware Security Modules



ATM Network Security
• ATM security was the “killer app” that brought 

cryptography into the commercial mainstream 
• Concrete security policy for APIs:

“Only the customer should know her PIN”

• Standard PIN processing transactions, but multiple 
implementations from different vendors using hardware to 
keep PINs / keys from bank staff

• IBM made CCA manual available online
– Excellent detailed description of API
– Good explanation of background to PIN processing APIs
– Unfortunately: lots of uncatalogued weaknesses. 



HSM Use in Banks

Issuing Bank
Regional HQ

HSM

ATM

Acquiring
Bank

Issuing
Bank

ATM Network

HSM

HSM

HSM

HSM

HSM with
keypad HSM

HSM

HSM



Start with your bank account number (PAN)

5641 8203 3428 2218

Encrypt with PIN Derivation Key

22BD 4677 F1FF 34AC

Chop off the (B->1)

End 2213 (D->3)

How are PINs Generated ?

decimalise



How do I change my PIN?
• Default is to store an offset between the 

original derived PIN and your chosen PIN
• Example bank record…

– PAN 5641 8233 6453 2229
– Name             Mr M K Bond
– Balance          £1234.56
– PIN Offset                           0000

• If I change PIN from 4426 to 1979, offset 
stored is 7553 (digit-by-digit modulo 10)



Offset Calculation Attack (1989)

• Bank adds a new command to the API to calculate the offset 
between a new generated PIN and the customer’s chosen PIN

• Possessing a bank account gives knowledge of one generated 
PIN. Any customer PIN could be revealed by calculating the 
offset between it and the known PIN

U → C : Old PAN, Old offset, New PAN

C → U : New offset



VSM Attack (2000)
• Top-level crypto keys exchanged between banks in several parts 

carried by separate couriers, which are recombined using the 
exclusive-OR function

Source
HSM

Dest
HSM

KP1

KP2

Repeat twice…

User→ HSM    : Generate Key Component
HSM → Printer: KP1
HSM → User   : {KP1}ZCMK

Combine components…

User→ HSM    : {KP1}ZCMK ,{KP2}ZCMK

HSM → User   : {KP1 ⊕ KP2}ZCMK

Repeat twice…

User→ HSM    : KP1

HSM → User   : {KP1}ZCMK

Combine components…

User→ HSM    : {KP1}ZCMK ,{KP2}ZCMK

HSM → User   : {KP1 ⊕ KP2}ZCMK



Idea: XOR To Null Key
• A single operator could feed in the same part twice, 

which cancels out to produce an ‘all zeroes’ test key. 
PINs could be extracted in the clear using this key

Combine components…

User→ HSM    : {KP1}ZCMK , {KP1}ZCMK

HSM → User   : {KP1 ⊕ KP1}ZCMK

KP1 xor KP1 = 0



Type System Attack (2001)
• ATMs are simpler than HSMs and have only one master 

key. ATMs need to be sent Terminal Communications 
keys (session keys) for link cryptography.

HSM ATM

Master Keys
TC – terminal communications
TMK – terminal master keys & PIN derivation keys
ZCMK – zone control master keys (between HSMs)
WK – working keys (session keys)
LP – local PIN storage key

Master Key
TMK-ATM  - used for everything

{ TC1 }TC { TC1 }TMK-ATM

but how?

TC1



Type System Attack (2)
• PIN derivation keys (PDKs) share the same type as Terminal 

Master Keys (TMKs), and encrypting communication keys for 
transfer to an ATMs uses exactly the same process as calculating 
a customer PIN – encryption with single DES.

User->HSM    : TC1

HSM->User    : { TC1 }TC

User->HSM    : { TC1 }TC , { TMK-ATM }TMK

HSM->User    : { TC1 }TMK-ATM

The attack:

User->HSM    : PAN

HSM->User    : { PAN }TC

User->HSM    : { PAN }TC , { PDK1 }TMK

HSM->User    : { PAN }PDK1



VSM Type Diagram



How Type-System Attack Was Found



IBM 4758 Key Hierarchy



Control Vectors

• IBM implementation, across many products since 1992, of 
the concept of ‘type’

• An encrypted key token looks like this :

EKm⊕TYPE( KEY ), TYPE



Key Part Import

• Thee key-part holders, each have KPA, KPC, KPC

• Final key K is  KPA ⊕ KPB ⊕ KPC

• All must collude to find K, but any one key-part holder can 
choose difference between desired K and actual value.



4758 Key Import Attack
KEK1 = KORIG 
KEK2 = KORIG ⊕ (old_CV ⊕ new_CV)
Normally ...
DKEK1⊕old_CV(EKEK1⊕old_CV(KEY)) = KEY

Attack ...
DKEK2⊕new_CV(EKEK1⊕old_CV(KEY)) = KEY

IBM had known about this attack, documented it
obscurely, and then forgotten about it!



Collision-Search Attacks

• A thief walks into a car park and tries to 
steal a car...

• How many keys must he try?



Car Park 1929



Car Park 2009



Collision-Search Attacks (2)

• Capture-recapture statistics; also ‘meet in the middle’
• Attack multiple keys in parallel, given a ‘test vector’ (same 

plaintext encrypted under each key)
• Typical case: A 256 search for one key becomes a 240 search 

for any one of 216 keys
• Any one key of a given type is usually enough - typical 

HSMs translate between keys of one type
• Poor implementations of 3DES (EK1, DK2, EK1) allow 

3DES key halves to be attacked individually



Collision Search Attack on HSMs

40 bits16 bits

• Generate 216 keys
• Encrypt test vectors

U->C : { KEY1 }KM 

C->U : { 0000000000000000 }KEY1

• Do 240 search
Cryptoprocessor’s Effort Search Machine’s Effort

56 bit key space



Collision Search on 3DES 

EK(DK(EK( KEY ) = EK(KEY)

A A

X Y

A A B B

A B

A Single Length Key

Double Length “Replicate”

Double Length





A Framework for Crypto

• Cryptography (making), cryptanalysis (breaking), 
cryptology (both)

• Traditional cryptanalysis – what goes wrong with 
the design of the algorithms

• Then – what goes wrong with their 
implementation (power analysis, timing attacks)

• Then – what goes wrong with their use (we’ve 
already seen several examples)

• How might we draw the boundaries?



A Framework for Crypto (2)

• The ‘random oracle model” gives us an idealisation of 
ciphers and hash functions

• For each input, give the output you gave last time – and a 
random output if the input’s new



A Framework for Crypto (3)
• There are three basic ‘random oracle’ primitives

– Stream ciphers have a fixed-length input (the key) and 
an unrestricted length output

– Hash functions have an unrestricted length input and a 
fixed length output (the hash)

– Block ciphers have fixed input and output. They are 
also invertible

• Block ciphers have an implicit key in this model; 
keyed hash functions may have too

• Random versus pseudorandom
• Let’s look at some historical examples



Stream Ciphers

• Julius Caesar: ci = pi + ‘d’ (mod 24)

veni vidi vici

ZHQM ZMGM ZMFM

• Abbasid caliphate – monoalphabetic substition

abcdefghijklmno …

SECURITYABDFGHI …

• Solution: letter frequencies. Most common letters 
in English are e, t, a, I, o, n, s, h, r, d, l, u



Stream Ciphers (2)

• 16th century – the Vigenère
plaintext tobeornottobethatistheques …

key runrunrunrunrunrunrunrunru …

ciphertext KIOVIEEIGKIOVNURNVJNUVKHVM …

• Solution: patterns repeat at multiples of keylength 
(Kasiski, 1883) – here, ‘KIOV’

• Modern solution (1915): index of coincidence, the 
probability two letters are equal, Ic = p∑ i

2 

• This is 0.038 = 1/26 for random letters, 0.065 for English 
and depends on keylength for Vigenère 



Stream Ciphers (3)

• The one-time pad was developed by Frank Miller 
(1882) then reinvented for use in WW1, then used in 
WW2 (and since) 

• It’s a Vigenère with an infinitely long key
• Provided the key is random and not reused or leaked, 

it’s provably secure
• A spy caught having sent message X can claim he 

sent message Y instead, so long as he destroyed his 
key material!

• See Leo Marks, “Between Silk and Cyanide”



Stream Ciphers (4)

• The spy if caught can 
say he sent something 
completely different!

• But the flip side is that 
anyone who can 
manipulate the 
channel can turn any 
known message into 
any arbitrary one



Stream Ciphers (5)

• The Hagelin M-
209 is one of 
many stream 
cipher machines 
developed in the 
1920s and 30s

• Used by US 
forces in WW2



An Early Block Cipher – Playfair

• Charles Wheatstone’s big idea: 
encipher two letters at a time!

• Use diagonals, or next letters in 
a row or column

• Used by JFK in the PT boat 
incident in WW2



Test Key Systems

• Stream ciphers can’t protect payment messages – the 
plaintext is predictable, and telegraph clerks can be bribed

• So in the 19th century, banks invented ‘test key’ systems – 
message authentication codes using secret tables

• Authenticator for £276,000 = 09+29+71 = 109



Modern Cipher Systems
• Many systems from the last century use stream ciphers for 

speed / low gate count
• Bank systems use a 1970s block cipher, the data 

encryption standard or DES; recently moving to triple-
DES for longer keys

• New systems mostly use the Advanced Encryption 
Standard (AES), regardless of whether a block cipher or 
stream cipher is needed

• For hashing, people use SHA, but this is getting insecure; a 
new hash function is underway and in the meantime 
people use SHA-256



Stream Cipher Example – Pay-TV

The old Sky-TV system



Stream Cipher Example – GSM

• WEP (and SSL/TLS) use RC4, a table shuffler a bit like 
rotor machines

i:= i+1 (mod 256)

j:= j+s[i] (mod 256)

swap(s[i],s[j])

t:= s[i]+s[j] (mod 256)

k:= s[t]

• RC4 encryption is fairly strong because of the large state 
space – but in WEP the algo used to set up the initial state 
of the table s[i] is weak (24-bit IVs are too short)

• Result:  break WEP key given tens of thousands of packets



Block Cipher – Basic Idea

• Shannon (1948) – iterate substitution, permutation
• Each output bit depends on input, key in complex way
• E.g. our AES candidate algorithm Serpent – 32 4-bit S-

boxes wide, 32 rounds; 128-bit block, 256-bit key
• Security – ensure block and key size large enough; that 

linear approximations don’t work (linear cryptanalysis), 
nor bit-twiddling either (differential cryptanalysis)



The Advanced Encryption Standard
• AES has a 128-bit block, arranged as 16 bytes
• Each round: shuffle bytes as below, xor key bytes, 

then bytewise S-box S(x) = M(1/x) + b in GF(28)
• 10 rounds for 128-bit keys; 12 for 192, 14 for 256 
• Only ‘certificational’ attacks are known (e.g. 2119 

effort attack against 256-bit keys)



The Data Encryption Standard

• DES was standardised in 1977; it’s widely used in 
banking, and assorted embedded stuff

• Internals: a bit more complex than AES (see book)
• Shortcut attacks exist but are not important: 

– differential cryptanalysis (247 chosen texts)
– linear cryptanalysis (241 known texts)

• 64-bit block size, hinders upgrade to AES
• 56-bit keys – keysearch is the real vulnerability!



Keysearch
• DES controversy in 1977 – 1M chips, 1Mkey/s, 215 

sec: would the beast cost $10m or $200m?
• Distributed volunteers (1997) – 5000 PCs
• Deep Crack (1998) – $250K (1000 FPGAs), 56 h
• 2005 – single DES withdrawn as standard
• Copacabana (2006) – $10K of FPGAs, 9 h
• Even 64-bit ciphers such as A5/3 (Kasumi) used 

in 3g are now vulnerable to military kit
• Banks moving to 3DES (EDE for compatibility) 



Modes of Operation

• ECB – electronic 
codebook – mode just 
encrypts a block at a time

• Patterns can still be fairly 
obvious

• In 1b, you saw other 
modes that can be used to 
hide them – and do other 
things too



Modes of Operation (2)

• Cipher block chaining (CBC) was the traditional mode for bulk 
encryption

• It can also be used to compute a message authentication code (MAC)
• But it can be insecure to use the same key for MAC and CBC (why?), 

so this is a 2-pass process



Modes of Operation (3)

• Counter mode (encrypt a 
counter to get keystream)

• New (2007) standard: 
Galois Counter Mode 
(GCM)

• Encrypt an authenticator 
tag too

• Unlike CBC / CBC MAC, 
one encryption per block – 
and parallelisable!

• Used in SSH, IPSEC,  …



Modes of Operation (4)

• Feedforward mode 
turns a block cipher 
into a hash function

• Input goes into the key 
port

• The block size had 
better be more than 64 
bits though!

• (Why?)



Hash Functions

• A cryptographic hash function distills a message 
M down to a hash h(M)

• Desirable properties include:
1. Preimage resistance – given X, you can’t find M such 

that h(M) = X

2. Collision resistance – you can’t find M1, M2 such that 
h(M1) = h(M2)

• Applications include hashing a message before 
digital signature, and computing a MAC



Hash Functions (2)

• Common hash functions use feedforward mode of a 
special block cipher – big block, bigger ‘key’

• MD5 (Ron Rivest, 1991):  still widely used, has 128-bit 
block. So finding a collision would take about 264 effort if it 
were cryptographically sound

• Flaws found by Dobbertin and others; collision existence 
by 2004; fake SSL certificates by 2005 (two public keys 
with same MD5 hash); now collision attack takes only a 
minute

• Next design was SHA



Hash Functions (3)

• NSA produced the secure 
hash algorithm (SHA or 
SHA1), a strengthened 
version of MD5, in 1993 

• 160-bit hash – the 
underlying block cipher has 
512-bit key, 160-bit block, 
80 rounds

• One round shown on left



Hash Functions (4)

• At Crypto 2005, a 269 collision attack on 
SHA was published by Xiaoyun Wang et al

• As an interim measure, people are moving 
to SHA256 (256-bit hash, modified round 
function) or for the paranoid SHA512

• There’s a competition underway, organised 
by NIST, to find ‘SHA3’



Hash Functions
• If we want to compute a MAC without using a 

cipher (e.g. to avoid export controls) we can use 
HMAC (hash-based message authentication code):
HMAC(k,M) = h(k1, h(k2, M))

where k1 = k xor 0x5c5c5c…5c5c, and k2 = 
0x363636…3636 (why?)

• Another app is tick payments – make a chain h1 = 
h(X), h2 = h(h1),  … ; sign hk; reveal hk-1, hk-2, …  to 
pay for stuff

• A third is timestamping; hash all the critical 
messages in your organisation in a tree and publish 
the result once a day



Advanced Crypto Engineering

• Once we move beyond ‘vanilla’ encryption into 
creative used of asymmetric crypto, all sorts of 
tricks become possible

• It’s also very easy to shoot your foot off!
• Framework: 

– What’s tricky about the maths
– What’s tricky about the implementation
– What’s tricky about the protocols etc

• To roll your own crypto, you need specialist help



Public Key Crypto Revision

• Digital signatures: computed using a private 
signing key on hashed data

• Can be verified with corresponding public 
verification key

• Can’t work out signing key from verification key
• Typical algorithms: DSA, elliptic curve DSA

• We’ll write sigA{X} for the hashed data X signed 
using A’s private signing key



Public Key Crypto Revision (2)

• Public key encryption lets you encrypt data 
using a user’s public encryption key

• She can decrypt it using her private 
decryption key

• Typical algorithms Diffie-Hellman, RSA

• We’ll write {X}A 

• Big problem: knowing whose key it is!



PKC Revision – Diffie-Hellman

• Diffie-Hellman: underlying metaphor is that 
Anthony sends a box with a message to Brutus

• But the messenger’s loyal to Caesar, so Anthony 
puts a padlock on it

• Brutus adds his own padlock and sends it back to 
Anthony

• Anthony removes his padlock and sends it to 
Brutus who can now unlock it

• Is this secure?



PKC Revision – Diffie-Hellman (2)

• Electronic implementation:
A → B: MrA

B → A: MrArB

A → B: MrB

• But encoding messages as group elements can be tiresome 
so instead Diffie-Hellman goes:

 A → B: grA

B → A: grB

A → B: {M}grArB



PKC Revision – El Gamal

• Encryption – DH can use long-term keys, 
say private key xA and public key yA = gxA

• The Bob looks up yA and makes the long-
term shared key yAxA = gxAxB = yBxA

• In El Gamal, combine with a transient 
private key k

• Bob encrypts M as M.yAk, gk

• Alice decrypts by forming yAk as (gk)xA



PKC Revision – El Gamal (2)

• Signature trick: given private key xA and public 
key yA = gxA, and transient private key k and 
transient public key r = gk, form the private 
equation 

rxA + sk = m 
• The digital signature on m is (r,s)
• Signature verification is

g(rxA + sk) = gm

• i.e. yAr.rs = gm



PKC Revision – DSS

• The Digital Signature Standard is ElGamal with a 
few technical weaknesses fixed

• p: a prime of 1024 bits; q: a prime dividing p-1; g: 
an element of order q in the integers mod p

• Signature on m is (r,s) such that
r = (gk mod p) mod q
h((M) = xAr + ks

• Verification: exercise 
• Only known vuln: choose q = h(M1) - h(M2) 



Public Key Crypto Revision (3)

• One way of linking public keys to principals is for the 
sysadmin to physically install them on machines (common 
with SSH, IPSEC)

• Another is to set up keys, then exchange a short string out 
of band to check you’re speaking to the right principal 
(STU-II, Bluetooth simple pairing)

• Another is certificates. Sam signs Alice’s public key 
(and/or signature verification key) 
CA = sigS{TS,L,A,KA,VA}

• But this is still far from idiot-proof…



The Denning-Sacco Protocol

• In 1982, Denning and Sacco pointed out the 
revocation problem with Needham-
Schroder and argued that public key should 
be used instead
A → S: A, B
S → A: CA, CB
A → B: CA, CB, {sigA{TA, KAB}}KB 

• What’s wrong?



The Denning-Sacco Protocol (2)

• Twelve years later, Abadi and Needham noticed 
that Bob can now masquerade as Alice to anyone 
in the world!
A → S: A, B

S → A: CA, CB

A → B: CA, CB, {sigA{TA, KAB}}KB 

B → S: B, C

S → B: CB, CC

B → C: CA, CC, {sigA{TA, KAB}}KC



Encrypting email

• Standard way (PGP) is to affix a signature to a 
message, then encrypt it with a message key, and 
encrypt the message with the recipient’s public 
key
A → B: {KM}B, {M, sigA{h(M)}}KM 

• X.400 created a detached signature
A → B: {KM}B, {M }KM, sigA{h(M)}

• And with XML you can mix and match… e.g. by 
signing encrypted data. Is this good?



Public-key Needham-Schroeder

• Proposed in 1978:
A → B: {NA, A}KB

B → A: {NA, NB}KA

A → B: {NB}KB

• The idea is that they then use NA⊕NB as a 
shared key

• Is this OK?



Public-key Needham-Schroeder (2)

• Attack found eighteen years later, in 1996:
A → C: {NA, A}KC

C → B: {NA, A}KB

B → C: {NA, NB}KA

C → A: {NA, NB}KA

A → C: {NB}KC

C → B: {NB}KB

• Fix: explicitness. Put all names in all messages



Public Key Protocol Problems

• It’s also very easy to set up keys with the wrong 
people – man-in-the-middle attacks get more 
pervasive. Assumptions are slippery to pin down

• Technical stuff too – if the math is exposed, an 
attacker may use it against you! 

• So data being encrypted (or signed) must be 
suitably packaged

• Many other traps, some extremely obscure…



PKC Revision – RSA

• Recall from 1a discrete maths: private key is two 
large primes p, q

• Public key is n = pq plus public exponent e
• Encryption: c = me (mod n)
• Decryption: m = cd (mod n)
• This works iff de = 1 (mod(p-1)(q-1))
• Proof: med = m(1+k(p-1)(q-1)) = m.1 (mod n) by Euler’s 

theorem
• Similarly signature s = md (mod n)



Extra Vulnerabilities of RSA

• Decryption = signature, so ‘sign this to prove who you are’ 
is really dangerous

• Multiplicative attacks: if m3 = m1.m2 then s3 = s1.s2 – so 
it’s even more important to hash messages before signature

• Also before encrypting: break multiplicative pattern by 
‘Optimal asymmetric encryption padding’. Process key k 
and random r to X, Y as

X = m ⊕ h(r)
Y = r ⊕ h(X)



Fancy Cryptosystems (1)

• Shared control: if all three directors of a company 
must sign a cheque, set d = d1 + d2 + d3

• Threshold cryptosystems: if any k out of l 
directors can sign, choose polynomial P(x) such 
that P(0) = d and deg(P) = k-1. Give each a point 
xi, P(xi)

• Lagrange interpolation: P(z) = xi (z-xi)/(xj-xi)∑ ∏
• So signature h(M)P(0) = h(M) xi (z-xi)/(xj-xi) ∑ ∏

 = h(M)∏ xi (…)∏



Fancy Cryptosystems (2)

• Identity-based cryptosystems: can you have the public key 
equal to your name?

• Signature (Fiat-Shamir): let the CA know the factors p, q 
of n. Let si = h(name,i), and the CA gives you σi = si √
(mod n)

• Sign M as r2, s = r∏hi(M)=1 σi (mod n) where hi(M) is 1 if the 
ith bit of M is one, else 0

• Verify: check that r2∏hi(M)=1 si = s2 (mod n)

• (Why is the random salt r used here, not just the raw 
combinatorial product?) 



Fancy Cryptosystems (3)

• Elliptic curve 
cryptosystems use a 
group of points on an 
elliptic curve y2 = x3 + 
ax + b rather than a 
group mod p

• Group law: if P, Q, R 
on a line then P+Q+R 
= 0 (the point at )∞

• DH, DSA etc go over



Fancy Cryptosystems (4)

• Elliptic curve crypto makes it even harder to choose good 
parameters (curve, generator)

• Also: a lot of implementation techniques are covered by 
patents held by Certicom

• OTOH: you can use smaller parameter sizes, e.g. 128-bit 
keys for equivalent of 64-bit symmetric keys, 256-bit for 
equivalent of 128

• Encryption, signature run much faster
• Being specified for next-generation Zigbee
• Also: can do tricks like identity-based encryption



Fancy Cryptosystems (5)
• Identity-based encryption: some pairs of elliptic curves 

have ‘bilinear pairing’ G1 x G1→ G2 such that e(aP,bQ) = 
e(P,Q)ab

• System secret s; public point P on G1; public key W = sP; 
user public key gID = e(h(ID),W); private key dID = sID

• Encrypt M: C = (rW, M⊕h(gID
r) = (U,V)

• Decrypt U,V: M = V⊕h(e(dID,U))

= V⊕h(e(sID,rW))
= V⊕h(e(ID,W)r)
= V⊕h(gID)r



Fancy Cryptosystems (6)

• Forward secure encryption – equipment capture should not 
compromise old traffic
– First option: DH to create transient key, then authenticate this
– Second option (US Defense Messaging System): create one-time 

ElGamal keys signed using your DSA key and serve them up
– Third option: use an identity-bases scheme to create a ‘key of the 

day’ for each future day and destroy the corresponding private 
keys as they expire

• Can trade algorithms / interactivity / infrastructure



Fancy Cryptosystems (7)

• Blind signatures: suppose Alice wants Bob the 
banker to sign a banknote without knowing its 
serial number. With RSA she sends him

M' = M.Re (mod n)
• He sends her S' = M'd (mod n)
• She divides by R to recover Md (mod n)
• Such ‘digital cash’ in general illegal, but similar 

ideas used in digital elections, and in crypto 
toolkits to combat side-channel attacks



General Problems with PKC

• Keys need to be long – we can factor / do discrete log to 
about 700 bits. For DSA/RSA, 1024 is marginal, 2048 
considered safe for now

• Elliptic curve variants can use shorter keys – but are 
encumbered with patents

• Computations are slow – several ms on Pentium, almost 
forever on 8051 etc

• Power analysis is a big deal: difference between squaring 
and doubling is visible. Timing attacks too

• For many applications PKC just isn’t worth it



TLS

• Formerly SSL, became TLS after many bugs fixed:
C → S: C, C#, NC                                       ‘client hello’

S → C: S, S#, NS CS                      ‘server hello’

C → S: {k0}KS ‘k0 =  pre-master secret’

C → S: {finished, MACK1(everything to date)}

S → C: {finished, MACK2(everything to date)}

K1, K2 hashed from ‘master secret’ K1 = h(k0, NC , NS)

• Formally verified to ‘work’ but still often used 
inappropriately (more later…)



TLS (2)

• Why doesn’t TLS stop phishing?
– Noticing an ‘absent’ padlock is hard
– Understanding URLs is hard
– Websites train users in bad practice
– …

• In short, TLS as used in e-commerce dumps 
compliance costs on users, who can’t cope

• There are solid uses for it though



Chosen protocol attack

• Suppose that we had a protocol for users to 
sign hashes of payment messages (such a 
protocol was proposed in 1990s):
C → M: order

M → C: X     [ = hash(order, amount, date, …)]

C → M: sigK{X}

• How might this be attacked?



Chosen protocol attack (2)

   The Mafia demands you sign a random 
challenge to prove your age for porn sites!





Building a Crypto Library is Hard!

• Sound defaults: AES GCM for encryption, 
SHA256 for hashing, PKC with long enough keys  

• Defend against power analysis, fault analysis, 
timing analysis , and other side-channel attacks. 
This is nontrivial! 

• Take great care with the API design
• Don’t reuse keys – ‘leverage considered harmful’!
• My strong advice: do not build a crypto library! If 

you must, you need specialist (PhD-level) help
• But whose can you trust?



How Certification Fails

• PEDs ‘evaluated under 
the Common Criteria’ 
were trivial to tap

• GCHQ wouldn’t 
defend the brand

• APACS said (Feb 08) 
it wasn’t a problem

• It sure is now…



Cryptographic Engineering 19c

• Auguste Kerckhoffs’ six principles, 1883
– The system should be hard to break in practice
– It should not be compromised when the opponent learns the 

method – security must reside in the choice of key
– The key should be easy to remember & change
– Ciphertext should be transmissible by telegraph
– A single person should be able to operate it
– The system should not impose mental strain

• Many breaches since, such as Tannenberg (1914)



What else goes wrong

• See ‘Why cryptosystems fail’, my website (1993):
– Random errors
– Shoulder surfing
– Insiders
– Protocol stuff, like encryption replacement

• Second big wave now (see current papers):
– ATM skimmers
– Tampered PIN entry devices
– Yes cards and other protocol stuff
– Watch this space!



Security Engineering

• No different in essence from any other branch of system 
engineering
– Understand the problem (threat model)
– Choose/design a security policy
– Build, test and if need be iterate

• Failure modes:
– Solve wrong problem / adopt wrong policy
– Poor technical work
– Inability to deal with evolving systems
– Inability to deal with conflict over goals



A Framework

 

Policy

Assurance

Incentives

Mechanism



Security Economics Example – 
Facebook

• Clear conflict of interest
– Facebook wants to sell user data
– Users want feeling of intimacy, small group, social 

control

• Complex access controls – 60+ settings on 7 pages
• Privacy almost never salient (deliberately!)
• Over 90% of users never change defaults
• This lets Facebook blame the customer when 

things go wrong



Conflict theory

• Does the defence of a country or a system depend 
on the least effort, on the best effort, or on the sum 
of efforts?

• The last is optimal; the first is really awful
• Software is a mix: it depends on the worst effort 

of the least careful programmer, the best effort of 
the security architect, and the sum of efforts of the 
testers

• Moral: hire fewer better programmers, more 
testers, top architects



How Much to Spend?

• How much should the average company spend on 
information security?

• Governments, vendors say: much much more than 
at present

• But they’ve been saying this for 20 years!
• Measurements of security return-on-investment 

suggest about 20% p.a. overall
• So the total expenditure may be about right. Are 

there any better metrics?



Skewed Incentives

• Why do large companies spend too much on 
security and small companies too little?

• Research shows an adverse selection effect
• Corporate security managers tend to be risk-averse 

people, often from accounting / finance
• More risk-loving people may become sales or 

engineering staff, or small-firm entrepreneurs
• There’s also due-diligence, government 

regulation, and insurance to think of



Skewed Incentives (2)

• If you are DirNSA and have a nice new hack on 
XP and Vista, do you tell Bill?

• Tell – protect 300m Americans
• Don’t tell – be able to hack 400m Europeans, 

1000m Chinese,…
• If the Chinese hack US systems, they keep quiet. 

If you hack their systems, you can brag about it to 
the President

• So offence can be favoured over defence



More …

• See www.ross-anderson.com for a survey article, 
ENISA report, and pages on security economics 
and security psychology

• WEIS – Workshop on Economics and Information 
Security

• Workshop on Security and Human Behaviour
• ‘Security Engineering – A Guide to Building 

Dependable Distributed Systems’

http://www.ross-anderson.com/

